电网全景输电线路三维机载雷达点云信息采集研究

王春龙, 陈炜彬, 陈凯

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (5) : 81-87.

PDF(980 KB)
PDF(980 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (5) : 81-87. DOI: 10.20193/j.ices2097-4191.2024.05.011
研究论文

电网全景输电线路三维机载雷达点云信息采集研究

作者信息 +

Research on three-dimensional airborne radar point cloud information acquisition for panoramic transmission lines of power grids

Author information +
文章历史 +

摘要

针对电网输电线路全景信息采集难度大、点云信息处理不准确等问题,提出了一种电网全景输电线路三维机载雷达点云信息采集系统。该系统通过对机载雷达信号处理系统设计和采集设备的选型,实现机载雷达硬件的设计和选择;采用激光雷达与惯性测量单元相结合的方式实现对输电线路点云数据更精确的采集;利用点云数据中的颜色信息和强度信息相结合的方式对点云数据进行分类处理,实现对点云数据信息的处理。通过实验验证了系统的采集误差比只采用激光雷达采集的误差小,且最大为0.21,最小为0.08;系统对不同物体的分类正确率不同,对输电线路分类正确率能达到97%,且较传统方法和单一的基于强度信息的点云数据处理分类方法正确率高。

Abstract

In view of the difficulty in collecting panoramic information of power grid transmission lines and the inaccuracy of point cloud information processing,a three-dimensional airborne radar point cloud information acquisition system for power grid panoramic transmission lines is proposed.The system realizes the design and selection of airborne radar hardware through the design of airborne radar signal processing system and the selection of acquisition equipment.It uses LiDAR combined with Inertial Measurement Unit to accurately collect point cloud data of transmission lines.Using the combination of color information and intensity information in point cloud data,the point cloud data is classified and processed to realize the processing of point cloud data information.The experiment results show that the acquisition error of the system is smaller than that of LiDAR only,and the maximum error is 0.21,and the minimum error is 0.08.The classification accuracy of the system for different objects is different,and the classification accuracy of the transmission line can reach 97%,which is higher than the traditional method and the single point cloud data processing and classification method based on intensity information.

关键词

机载雷达 / 点云信息采集 / 惯性测量单元 / 点云颜色 / 点云强度

Key words

airborne radar / point cloud information collection / inertial measurement unit / point cloud color / point cloud intensity

引用本文

导出引用
王春龙, 陈炜彬, 陈凯. 电网全景输电线路三维机载雷达点云信息采集研究[J]. 集成电路与嵌入式系统. 2024, 24(5): 81-87 https://doi.org/10.20193/j.ices2097-4191.2024.05.011
WANG Chunlong, CHEN Weibin, CHEN Kai. Research on three-dimensional airborne radar point cloud information acquisition for panoramic transmission lines of power grids[J]. Integrated Circuits and Embedded Systems. 2024, 24(5): 81-87 https://doi.org/10.20193/j.ices2097-4191.2024.05.011
中图分类号: TP391   

参考文献

[1]
王鹏飞. 5G无人机自动巡线技术在电力输电线路巡检的实现策略[J]. 中国高新科技, 2023(10):69-70.
WANG P F. Implementation Strategy of 5G Unmanned Aerial Vehicle Automatic Line Inspection Technology in Power Transmission Line Inspection[J]. China High Technology, 2023(10):69-70. (in Chinese)
[2]
郑仟. 基于多旋翼无人机的架空输电线路状态检测系统设计[J]. 计算机测量与控制, 2022, 30(12):332-338.
ZHENG Q. Design of an overhead transmission line status detection system based on multi rotor unmanned aerial vehicles[J]. Computer Measurement and Control, 2022, 30 (12):332-338. (in Chinese)
[3]
王维坤, 余志伟, 马鹏飞. 输电线路巡检智能单兵装备全景采集系统设计[J]. 机械与电子, 2021, 39(09):32-36.
WANG W K, YU ZH W, MA P F. Design of Intelligent Single Soldier Equipment Panoramic Acquisition System for Transmission Line Inspection[J]. Mechanical and Electronics, 2021, 39(9):32-36. (in Chinese)
[4]
程燕胜, 杨鹤猛, 陈艳芳. 基于北斗的架空输电线路弧垂监测系统设计[J]. 自动化技术与应用, 2023, 42(2):98-100,154.
CHENG Y SH, YANG H M, CHEN Y F. Design of overhead transmission line sag monitoring system based on Beidou[J]. Automation Technology and Application, 2023, 42(2):98-100,154. (in Chinese)
[5]
马强. 机载有源相控阵雷达的BIT设计[J]. 电子质量, 2022(10):171-174.
MA Q. BIT Design of Airborne Active Phased Array Radar[J]. Electronic Quality, 2022(10):171-174. (in Chinese)
[6]
李哲, 王伟, 赵娟, 等. 基于中值对消ACSI算法的机载雷达杂波抑制研究[J]. 火控雷达技术, 2023, 52(1):151-157.
LI ZH, WANG W, ZHAO J, et al. Research on Airborne Radar Clutter Suppression Based on Median Cancellation ACSI Algorithm[J]. Fire Control Radar Technology, 2023, 52 (1):151-157. (in Chinese)
[7]
黄劲风. 机载雷达测绘技术在大坝沉降分析中的应用—以XL水电站为例[J]. 测绘与空间地理信息, 2023, 46(5):159-161,166.
HUANG J F. Application of Airborne Radar Surveying and Mapping Technology in Dam Settlement Analysis-Taking XL Hydropower Station as an Example[J]. Surveying and Spatial Geographic Information, 2023, 46(5):159-161,166. (in Chinese)
[8]
王志伟, 薄孟德, 王思元. 基于三维激光雷达高精度地图生成测绘背包研究[J]. 哈尔滨师范大学自然科学学报, 2023, 39(2):70-76.
WANG ZH W, BO M D, WANG S Y. Research on generating mapping backpacks based on high-precision 3D LiDAR maps[J]. Journal of Natural Science of Harbin Normal University, 2023, 39(2):70-76. (in Chinese)
[9]
耿子成. 基于LiDAR/IMU/ODO的无人车导航算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
GENG Z CH. Research on Autonomous Vehicle Navigation Algorithm Based on LiDAR/IMU/ODO[D]. Harbin: Harbin Institute of Technology, 2022. (in Chinese)
[10]
张晓华, 蔡巍, 武宇平, 等. 基于三维点云数据的输电线路状态模拟研究[J]. 自动化仪表, 2022, 43(11):29-32,38.
ZHANG X H, CAI W, WU Y P, et al. Research on Transmission Line State Simulation Based on 3D Point Cloud Data[J]. Automation Instrumentation, 2022, 43(11):29-32,38. (in Chinese)
[11]
李然, 邢耀文, 高璐. 基于点云强度与颜色的机载雷达点云滤波方法[J]. 山西建筑, 2023, 49(7):176-179.
LI R, XING Y W, GAO L. Airborne radar point cloud filtering method based on point cloud intensity and color[J]. Shanxi Architecture, 2023, 49(7):176-179. (in Chinese)

编辑: 薛士然
PDF(980 KB)

Accesses

Citation

Detail

段落导航
相关文章

/