基于Transformer的DC/DC板级验证状态识别

于海波, 李杰, 胡陈君, 夏俊辉, 张伟

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (5) : 94-100.

PDF(3720 KB)
PDF(3720 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (5) : 94-100. DOI: 10.20193/j.ices2097-4191.2024.05.013
研究论文

基于Transformer的DC/DC板级验证状态识别

作者信息 +

DC/DC board-level verification status recognition based on Transformer

Author information +
文章历史 +

摘要

为满足航天产品的高精度、高可靠性需求,实现元器件自主可控、芯片国产化及应用适应性验证十分必要,设计一种基于FPGA的国产DC/DC板级综合测试平台。在长时间的热学环境适应性板级验证项目中,为实现DC/DC器件应用板卡工作状态的实时监测,提出一种基于Transformer的智能识别算法。分别使用空载、负载电流3 A、负载电流5 A、高输入电压、低输入电压、短路状态下的DC-DC输出序列,输入到Transformer模型中并利用注意力机制提取各序列的全局注意力特征,并对深度学习模型进行训练。实验结果表明,对于此6种工作状态数据集,Transformer模型识别的准确率为99.2%,具备良好的分类和监测性能,具有一定的工程应用价值。

Abstract

To meet the high-precision and high-reliability requirements of aerospace products,and achieve self-reliance in components and chip localization,as well as application adaptability verification,it is necessary to design a domestic DC/DC board-level comprehensive testing platform based on FPGA.In long-term thermal environmental adaptability board-level verification projects,to achieve real-time monitoring of the working status of DC/DC device application boards,a smart recognition algorithm based on Transformer is proposed.The deep learning model is trained using these features.The experiment results show that for this 6-state dataset,the recognition accuracy of the Transformer model is 99.2%,which has good classification and monitoring performance and has certain engineering application value.

关键词

FPGA / 板级测试 / 状态识别 / 深度学习 / Transformer模型

Key words

FPGA / board-level testing / status recognition / deep learning / Transformer model

引用本文

导出引用
于海波, 李杰, 胡陈君, . 基于Transformer的DC/DC板级验证状态识别[J]. 集成电路与嵌入式系统. 2024, 24(5): 94-100 https://doi.org/10.20193/j.ices2097-4191.2024.05.013
YU Haibo, LI Jie, HU Chenjun, et al. DC/DC board-level verification status recognition based on Transformer[J]. Integrated Circuits and Embedded Systems. 2024, 24(5): 94-100 https://doi.org/10.20193/j.ices2097-4191.2024.05.013
中图分类号: TP391.4   

参考文献

[1]
张群. 航天关键国产化元器件应用验证技术研究[C]// 第五届航天电子战略研究论坛论文集(微电子专刊), 2018:4.
ZHANG Q. Research on Application Verification Technology of Key Domestic Aerospace Components[C]// Proceedings of the 5th Aerospace Electronics Strategy Research Forum(Microelectronics Special Issue), 2018:4. (in Chinese)
[2]
李永梅, 李先亚, 周传祥. 军用进口电子元器件的国产化替代验证典型案例分析[J]. 质量与可靠性, 2017(5):30-33.
LI Y M, LI X Y, ZHOU CH X. Analysis of Typical Cases of Localization Substitution Verification of Military Imported Electronic Components[J]. Quality and Reliability, 2017(5):30-33. (in Chinese)
[3]
彭晓飞, 李杰, 张德彪, 等. 高精度国产ADC测试平台的设计与实现[J]. 中国测试, 2022, 48(8):136-143.
PENG X F, LI J, ZHANG D B, et al. Design and Implementation of High Precision Domestic ADC Testing Platform[J]. China Testing, 2022, 48(8):136-143. (in Chinese)
[4]
吴海平, 蔡刚, 黄菊莲, 等. 国产DC/DC模块板级设计与实现[J]. 电子制作, 2023, 31(17):3-6.DOI:10.16589/j.cnki.cn11-3571/tn.2023.17.005.
WU H P, CAI G, HUANG J L, et al. Design and Implementation of Domestic DC/DC Module Board Level[J]. Electronic Manufacturing, 2023, 31(17):3-6.DOI:10.16589/j.cnki.cn11-3571/tn.2023.17.005. (in Chinese)
[5]
张昱, 王炳同, 邢鹏. 基于LabVIEW大功率DC/DC变换器实时数据采集系统[J]. 工业控制计算机, 2006(8):12-13.
ZHANG Y, WANG B T, XING P. Real time data acquisition system for high-power DC/DC converters based on LabVIEW[J]. Industrial Control Computer, 2006(8):12-13. (in Chinese)
[6]
易磊, 张蓉, 邓春花, 等. 基于双向DC-DC变换器的电力电子创新实验平台设计[J]. 实验科学与技术, 2023, 21(5):143-148.
YI L, ZHANG R, DENG CH H, et al. Design of an innovative experimental platform for power electronics based on bidirectional DC-DC converters[J]. Experimental Science and Technology, 2023, 21(5):143-148. (in Chinese)
[7]
CHUN C, XIAPING Z, JIUCHUN J, et al. Electric vehicle battery pack micro-short circuit fault diagnosis based on charging voltage ranking evolution[J]. Journal of Power Sources, 2022,542.
[8]
ZHOU H, ZHANG S, PENG J, et al. Informer:Beyond efficient transformer for long sequence time-series forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12):11106-11115.
[9]
曹琨. 基于Transformer框架的雷达遥感图像序列特征提取及分类研究[D]. 北京: 北方工业大学, 2021.DOI:10.26926/d.cnki.gbfgu.2021.000510.
CAO K. Research on Feature Extraction and Classification of Radar Remote Sensing Image Sequence Based on Transformer Framework[D]. Beijing: North China University of Technology, 2021.DOI: 10.26926/d.cnki.gbfgu.2021-000510. (in Chinese)

基金

高动态短航时弹用半捷联惯性测量系统误差自补偿理论与方法研究(61973280)
弹载组合导航射后空中一体化对准理论与方法研究(2021030212241864)

编辑: 薛士然
PDF(3720 KB)

Accesses

Citation

Detail

段落导航
相关文章

/