PDF(3720 KB)
基于Transformer的DC/DC板级验证状态识别
于海波, 李杰, 胡陈君, 夏俊辉, 张伟
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (5) : 94-100.
PDF(3720 KB)
PDF(3720 KB)
基于Transformer的DC/DC板级验证状态识别
DC/DC board-level verification status recognition based on Transformer
为满足航天产品的高精度、高可靠性需求,实现元器件自主可控、芯片国产化及应用适应性验证十分必要,设计一种基于FPGA的国产DC/DC板级综合测试平台。在长时间的热学环境适应性板级验证项目中,为实现DC/DC器件应用板卡工作状态的实时监测,提出一种基于Transformer的智能识别算法。分别使用空载、负载电流3 A、负载电流5 A、高输入电压、低输入电压、短路状态下的DC-DC输出序列,输入到Transformer模型中并利用注意力机制提取各序列的全局注意力特征,并对深度学习模型进行训练。实验结果表明,对于此6种工作状态数据集,Transformer模型识别的准确率为99.2%,具备良好的分类和监测性能,具有一定的工程应用价值。
To meet the high-precision and high-reliability requirements of aerospace products,and achieve self-reliance in components and chip localization,as well as application adaptability verification,it is necessary to design a domestic DC/DC board-level comprehensive testing platform based on FPGA.In long-term thermal environmental adaptability board-level verification projects,to achieve real-time monitoring of the working status of DC/DC device application boards,a smart recognition algorithm based on Transformer is proposed.The deep learning model is trained using these features.The experiment results show that for this 6-state dataset,the recognition accuracy of the Transformer model is 99.2%,which has good classification and monitoring performance and has certain engineering application value.
FPGA / 板级测试 / 状态识别 / 深度学习 / Transformer模型
FPGA / board-level testing / status recognition / deep learning / Transformer model
| [1] |
张群. 航天关键国产化元器件应用验证技术研究[C]// 第五届航天电子战略研究论坛论文集(微电子专刊), 2018:4.
|
| [2] |
李永梅, 李先亚, 周传祥. 军用进口电子元器件的国产化替代验证典型案例分析[J]. 质量与可靠性, 2017(5):30-33.
|
| [3] |
彭晓飞, 李杰, 张德彪, 等. 高精度国产ADC测试平台的设计与实现[J]. 中国测试, 2022, 48(8):136-143.
|
| [4] |
吴海平, 蔡刚, 黄菊莲, 等. 国产DC/DC模块板级设计与实现[J]. 电子制作, 2023, 31(17):3-6.DOI:10.16589/j.cnki.cn11-3571/tn.2023.17.005.
|
| [5] |
张昱, 王炳同, 邢鹏. 基于LabVIEW大功率DC/DC变换器实时数据采集系统[J]. 工业控制计算机, 2006(8):12-13.
|
| [6] |
易磊, 张蓉, 邓春花, 等. 基于双向DC-DC变换器的电力电子创新实验平台设计[J]. 实验科学与技术, 2023, 21(5):143-148.
|
| [7] |
|
| [8] |
|
| [9] |
|
/
| 〈 |
|
〉 |