基于边缘计算的电网主设备状态实时监测方法

桂顺生, 王世涛, 须伟平

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (6) : 18-23.

PDF(887 KB)
PDF(887 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (6) : 18-23. DOI: 10.20193/j.ices2097-4191.2024.06.003
研究论文

基于边缘计算的电网主设备状态实时监测方法

作者信息 +

Real-time monitoring method of power grid main equipment status based on edge computing

Author information +
文章历史 +

摘要

针对电网主设备状态实时监测性能和异常检测准确率低的问题,构建了一个基于边缘计算的电网主设备状态实时监测系统。该系统通过传感器模块对电网主设备状态进行实时数据采集;基于即时定位与地图创建(Simultaneous Localization and Mapping,SLAM)对电网主设备进行监测;边缘节点模块利用小波去噪对采集的数据进行处理,采用局部异常因子(Local Outlier Factor,LOF)算法对数据进行异常值检测;网络节点模块利用消息队列遥测传输协议(Message Queuing Telemetry Transport,MQTT)将处理后的结果值传输到管理平台;通过管理平台模块的分析展示、告警处理和权限设定实现对电网主设备状态的实时检测和预警。实验结果表明,该系统采用LOF算法对数据进行异常值检测,其误报率为1.5%,检测率为98.5%,准确率能达到98.6%。采用MQTT协议传输数据的平均时延为31.52 ms,到报率能达到99.78%,具有较好的实用性。

Abstract

Aiming at the problems of low real-time monitoring performance and anomaly detection accuracy of power grid main equipment,a real-time monitoring system of power grid main equipment based on edge computing is constructed.The system collects real-time data of the state of power grid main equipment through the sensor module.Simultaneous Localization and Mapping (SLAM) is used to monitor the main equipment of power grid.The edge node module uses wavelet denoising to denoise the collected data,and uses the Local Outlier Factor (LOF) algorithm to detect the data outliers.The network node module uses Message Queuing Telemetry Transport (MQTT) to transmit the processed result value to the management platform.Through the analysis and display,alarm processing and permission setting of the management platform module,the real-time detection and early warning of the power grid main equipment status are realized.The experimental results show that the system uses LOF algorithm to detect outliers.The false positive rate is 1.5%,the detection rate is 98.5%,and the accuracy rate can reach 98.6%.The average time delay of data transmission using MQTT protocol is 31.52 ms, and the transmission rate can reach 99.78%,which is highly practical.

关键词

边缘计算 / 电网主设备 / 实时检测 / 小波去噪 / LOF算法 / MQTT协议

Key words

edge computing / power grid main equipment / real-time detection / wavelet denoising / LOF algorithm / MQTT protocol

引用本文

导出引用
桂顺生, 王世涛, 须伟平. 基于边缘计算的电网主设备状态实时监测方法[J]. 集成电路与嵌入式系统. 2024, 24(6): 18-23 https://doi.org/10.20193/j.ices2097-4191.2024.06.003
GUI Shunsheng, WANG Shitao, XU Weiping. Real-time monitoring method of power grid main equipment status based on edge computing[J]. Integrated Circuits and Embedded Systems. 2024, 24(6): 18-23 https://doi.org/10.20193/j.ices2097-4191.2024.06.003
中图分类号: TM73 (电力系统的调度、管理、通信)   

参考文献

[1]
徐昊, 肖勇, 马雪菲. 基于灰色关联和层次分析的电网故障诊断[J]. 中国科技信息, 2023(14):101-104.
XU H, XIAO Y, MA X F. Grid fault diagnosis based on Grey correlation and Hierarchical Analysis[J]. China Science and Technology Information, 2023(14):101-104. (in Chinese)
[2]
叶飞, 王来善, 张静鑫, 等. 基于关联规则挖掘的电网设备差异化状态检测[J]. 信息技术, 2023, 47(4):157-160,166.
YE F, WANG L SH, ZHANG J X, et al. Differential state detection of power grid equipment based on Association rule mining[J]. Information Technology, 2019, 47(4):157-160,166. (in Chinese)
[3]
高源, 张振宇, 罗翔, 等. 电网设备状态在线监控系统的研究[J]. 电子器件, 2021, 44(5):1183-1189.
GAO Y, ZHANG ZH Y, LUO X, et al. Research on on-line Monitoring System of Power Grid Equipment[J]. Electronic Devices, 2021, 44(5):1183-1189. (in Chinese)
[4]
李岩. 基于多源数据融合感知的电网设备供应链管控与预警算法设计[J]. 电子设计工程, 2023, 31(12):169-172.
LI Y. Design of power grid equipment supply chain control and early warning algorithm based on multi-source data fusion perception[J]. Electronic Design Engineering, 2019, 31(12):169-172. (in Chinese)
[5]
高骞, 杨俊义, 刘凯, 等. 基于数据驱动技术的配电网拓扑结构及线路参数识别方法[J]. 电力电容器与无功补偿, 2023, 44(2):77-87.
GAO Q, YANG J Y, LIU K, et al. Distribution network Topology and Line Parameter Ide.pngication Method Based on Data-driven Technology[J]. Power Capacitors and reactive Power Compensation, 2023, 44(2):77-87. (in Chinese)
[6]
张亚芳. 基于四线制PT100的高精度温度采集系统[J]. 佳木斯大学学报(自然科学版), 2023, 41(2):162-165.
ZHANG Y F. High precision temperature acquisition System based on four-wire PT100[J]. Journal of Jimusi University (Natural Science Edition), 2023, 41(2):162-165. (in Chinese)
[7]
王玲. 用冲击法校准压电式力传感器的灵敏度[J]. 上海计量测试, 2023, 50(2):43-46.
WANG L. Calibrating Sensitivity of piezoelectric Force Sensor by Impact Method[J]. Shanghai Journal of Measurement and Testing, 2023, 50(2):43-46. (in Chinese)
[8]
刘伟, 赵玄玉, 查明虎. 基于霍尔传感器的工业机器人轴电流监测研究[J]. 湖北民族大学学报(自然科学版), 2022, 40(3):289-292.
LIU W, ZHAO X Y, ZHA M H, et al. Research on shaft current Monitoring of Industrial Robot based on Hall Sensor[J]. Journal of Hubei University for Nationalities(Natural Science Edition), 2022, 40(3):289-292. (in Chinese)
[9]
姬鑫. 基于信号分析的三电平逆变器开路故障诊断方法研究[D]. 西安: 西安工业大学, 2022.
JI X. Research on open-circuit fault diagnosis method of three-level Inverter based on Signal analysis[D]. Xi'an: Xi'an Technological University, 2022. (in Chinese)
[10]
尤向前, 高盼. 基于Hadoop与局部异常因子的用电行为检测方法[J]. 科技创新与应用, 2023, 13(21):73-76.
YOU X Q, GAO P. Electricity Consumption behavior detection method based on Hadoop and local anomaly factor[J]. Science and Technology Innovation and Application, 2019, 13(21):73-76. (in Chinese)
[11]
孙友林. 基于MQTT协议的物联网云平台设计与实现[J]. 物联网技术, 2023, 13(6):71-72.
SUN Y L. Design and Implementation of Internet of Things Cloud Platform based on MQTT Protocol[J]. Internet of Things Technology, 2023, 13(6):71-72. (in Chinese)
[12]
任雪峰, 武志伟. 一种电源监控管理模块的实现方法[J]. 雷达与对抗, 2022, 42(4):65-68.
REN X F, WU ZH W. An implementation method of Power monitoring management module[J]. Radar and Countermeasures, 2022, 42(4):65-68. (in Chinese)

编辑: 薛士然
PDF(887 KB)

Accesses

Citation

Detail

段落导航
相关文章

/