偏置电压和温度对22 nm FDSOI器件单粒子瞬态的影响研究

黄潇枫, 李臣明, 王海滨, 孙永姝, 王亮, 郭刚, 汪学明

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (7) : 30-36.

PDF(4225 KB)
PDF(4225 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (7) : 30-36. DOI: 10.20193/j.ices2097-4191.2024.07.005
集成电路可靠性研究专栏

偏置电压和温度对22 nm FDSOI器件单粒子瞬态的影响研究

作者信息 +

Bias voltage and temperature dependence of single-event transient in 22 nm FDSOI devices

Author information +
文章历史 +

摘要

针对22 nm FDSOI工艺在辐射环境下的单粒子瞬态问题,基于Sentaurus TCAD仿真工具对22 nm FDSOI NMOS进行建模,仿真研究了22 nm FDSOI NMOS的单粒子瞬态敏感区域,以及不同偏置电压和工作温度对单粒子瞬态的影响机理。仿真结果表明,22 nm FDSOI NMOS的敏感区域为体区和靠近体区的LDD区域;随着偏置电压的升高,漏端总收集电荷逐渐增大,漏端瞬态脉冲电流的脉冲宽度逐渐减小;相较于偏置电压对单粒子瞬态的影响,工作温度对22 nm FDSOI NMOS单粒子瞬态的影响并不明显。

Abstract

In order to investigate single-event transient (SET) of 22 nm FDSOI technology, we have built a FDSOI NMOS model based on Sentaurus TCAD and carried out various SET simulations in 22nm FDSOI NMOS. The sensitive region, bias voltage and temperature dependence of SET in 22 nm FDSOI NMOS have been examined. The simulation results show that the sensitive regions in 22 nm FDSOI NMOS are the body region and LDD region near the body region. As the bias voltage increases, the total collected charge is increasing, and the width of drain transient pulse current is declining. Compared to the bias voltage, the effect of operating temperature on SET in 22 nm FDSOI NMOS is not significant.

关键词

22 nm FDSOI / 单粒子瞬态 / 亚阈值 / TCAD

Key words

22 nm FDSOI / single-event transient / subthreshold / TCAD

引用本文

导出引用
黄潇枫, 李臣明, 王海滨, . 偏置电压和温度对22 nm FDSOI器件单粒子瞬态的影响研究[J]. 集成电路与嵌入式系统. 2024, 24(7): 30-36 https://doi.org/10.20193/j.ices2097-4191.2024.07.005
HUANG Xiaofeng, LI Chenming, WANG Haibin, et al. Bias voltage and temperature dependence of single-event transient in 22 nm FDSOI devices[J]. Integrated Circuits and Embedded Systems. 2024, 24(7): 30-36 https://doi.org/10.20193/j.ices2097-4191.2024.07.005
中图分类号: TN432 (场效应型)   

参考文献

[1]
赵雯, 赵凯, 陈伟, 等. 22 nm FDSOI工艺SRAM单粒子效应的重离子实验研究[J]. 原子能科学技术, 2022, 56(3):537-545.
ZHAO W, ZHAO K, CHEN W, et al. Heavy ion experimental study on the single particle effect of SRAM in the 22 nm FDSOI process[J]. Atomic Energy Science and Technology, 2022, 56(3):537-545 (in Chinese).
[2]
SCHWANK J R, V FERLET-CAVROIS, M R SHANEYFELT, et al. Radiation effects in SOI technologies[J]. IEEE Transactions on Nuclear Science, 2003, 50(3):522-538.
[3]
BOISSAC C L M D, F ABOUZEID, V MALHERBE, et al. Influence of Supply Voltage and Body Biasing on Single-Event Upsets and Single-Event Transients in UTBB FD-SOI[J]. IEEE Transactions on Nuclear Science, 2021, 68(5):850-856.
[4]
CAI C, HE Z, LIU T, et al. Characterization of Heavy Ion Induced SET Features in 22-nm FD-SOI Testing Circuits[J]. IEEE Access, 2020(8):45378-45389.
[5]
BARTRA W C, AVLADIMIRESCU, RREIS. Process and temperature impact on single-event transients in 28nm FDSOI CMOS[C]// 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS).Bariloche,Argentina, 2017:1-4.
[6]
XU J, Y GUO, R SONG, et al. Supply Voltage and Temperature Dependence of Single-Event Transient in 28-nm FDSOI MOSFETs[J]. Symmetry, 2019, 11(6):793.
[7]
XU J, Y GUO, R SONG, et al. Experimental investigation of SEUs Induced by Heavy Ions in 28-nm FDSOI SRAMs[C]// 2019 19th European Conference on Radiation and Its Effects on Components and Systems (RADECS).Montpellier,France, 2019:1-3.
[8]
MALHERBE V, G GASIOT, D SOUSSAN, et al. Alpha soft error rate of FDSOI 28 nm SRAMs: Experimental testing and simulation analysis[C]// 2015 IEEE International Reliability Physics Symposium. Monterey,CA,USA, 2015:SE.11.1-SE.11.6.
[9]
CARTER R, J MAZURIER, L PIRRO, et al. 22nm FDSOI technology for emerging mobile, Internet-of-Things, and RF applications[C]// 2016 IEEE International Electron Devices Meeting (IEDM).San Francisco,CA,USA, 2016:2.2.1-2.2.4.
[10]
连军, 海潮和. TiN栅及抬高源漏的薄膜全耗尽SOI CMOS器件的模拟研究[J]. 微电子学, 2005(1):44-46,50.
LIAN J, HAI CH H. Simulation study of thin film fully depleted SOI CMOS devices with TiN gates and raised source drain[J]. Microelectronics, 2005(1):44-46,50 (in Chinese).
[11]
NSENGIYUMVA P, L W MASSENGILL, M L ALLES, et al. Analysis of Bulk FinFET Structural Effects on Single-Event Cross Sections[J]. IEEE Transactions on Nuclear Science, 2017, 64(1):441-448.
[12]
LIU J, YAN S, XUE J, et al. Comparison of ionization track structure models for electronic devices of different sizes[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2019, 444:43-49.
[13]
CASTELLANI-COULIE K, D MUNTEANU, V FERLET-CAVROIS, et al. Simulation analysis of the bipolar amplification in fully-depleted SOI technologies under heavy-ion irradiations[J]. IEEE Transactions on Nuclear Science, 2005, 52(5):1474-1479.

基金

国防科工局抗辐照应用技术创新基金重点项目(KFZC2020010401)

编辑: 薛士然
PDF(4225 KB)

Accesses

Citation

Detail

段落导航
相关文章

/