应用于睡眠定时器的纳瓦级功耗超低电压张弛振荡器

李振, 王霖伟, 杨建行, 朱建华, 杨伟涛, 周荣, 刘术彬

集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (7) : 65-72.

PDF(7419 KB)
PDF(7419 KB)
集成电路与嵌入式系统 ›› 2024, Vol. 24 ›› Issue (7) : 65-72. DOI: 10.20193/j.ices2097-4191.2024.07.011
研究论文

应用于睡眠定时器的纳瓦级功耗超低电压张弛振荡器

作者信息 +

Nanowatt voltage relaxation oscillator applied to sleep timers

Author information +
文章历史 +

摘要

在物联网(IoT)系统中,为了节省功耗引入了电阻电容(RC)张弛振荡器。针对无补偿的传统RC振荡器频率容易受到电源和温度影响的问题,本文所采用的前向体偏置(Forward Body Biasing,FBB)技术降低了低电源电压数字缓冲器的温度漂移,进一步的,本文同时利用亚阈区金属-氧化物半导体场效应晶体管(MOSFET,简称MOS)泄漏电流补偿技术(Subthreshold Leakage Current,SLC)和泄漏电流抑制技术(Subthreshold Leakage Suppression,SLS)。相比于传统结构振荡器,温度稳定性提升了约38倍。本文基于65 nm CMOS工艺设计了一款RC张弛振荡器,在室温0.4 V的电源电压下,功耗为8.1 nW,工作频率为4.4 kHz,能量效率为1.84 nW/kHz。在-30~90 ℃的范围内,振荡器的温度稳定性为75.1 ppm/℃。

Abstract

In Internet of Things (IoT) systems,Resistance-Capacitance (RC) relaxation oscillator has been implemented to reduce power consumption.To address the issue that uncompensated traditional RC oscillators are susceptible to power supply and temperature influences,the Forward Body Biasing (FBB) technique is employed to reduce the temperature drift of the low supply voltage digital buffer.Additionally,leverage Subthreshold Leakage Current (SLC) compensation and Subthreshold Leakage Suppression (SLS) in high-temperature subthreshold MOS transistors are used.Compared to uncompensated oscillators,the temperature stability is enhanced by 38 times.A relaxation oscillator based on 65 nm CMOS is designed.With a power supply voltage of 0.4 V at room temperature,the power consumption is 8.1 nW,operating at a frequency of 4.4 kHz.The energy efficiency is calculated at 1.84 nW/kHz.Within the range of -30℃ to 90℃,the temperature stability of the oscillator is measured at 75.1 ppm/℃.

关键词

电容电阻张弛振荡器 / 泄露电流补偿 / 前向体偏置 / 物联网

Key words

RC relaxation oscillator / leakage current compensation / forward body biasing / IoT

引用本文

导出引用
李振, 王霖伟, 杨建行, . 应用于睡眠定时器的纳瓦级功耗超低电压张弛振荡器[J]. 集成电路与嵌入式系统. 2024, 24(7): 65-72 https://doi.org/10.20193/j.ices2097-4191.2024.07.011
LI Zhen, WANG Linwei, YANG Jianhang, et al. Nanowatt voltage relaxation oscillator applied to sleep timers[J]. Integrated Circuits and Embedded Systems. 2024, 24(7): 65-72 https://doi.org/10.20193/j.ices2097-4191.2024.07.011
中图分类号: TN43 (半导体集成电路(固体电路))   

参考文献

[1]
黄柳芳. 低频可控震源特征及信号检测方法研究[D]. 郑州: 郑州大学, 2017.
HUANG L F. Research on characteristics and signal detection methods of low-frequency controllable seismic sources[D]. Zhengzhou: Zhengzhou University, 2017 (in Chinese).
[2]
梁航. 基于ARM7微处理器的动态心电记录器[D]. 长春: 吉林大学, 2007.
LIANG H. Dynamic electrocardiogram recorder based on ARM7 microprocessor[D]. Changchun: Jilin University, 2007 (in Chinese).
[3]
P M Y Fan, A Savanth, B Labbé, et al. A 0.98 nW/kHz 33 kHz Fully Integrated Subthreshold-Region Operation RC Oscillator With Forward-Body-Biasing[J]// IEEE Solid-State Circuits Letters, 2019, 2(9):175-178.
[4]
陈东桥. 基于CMOS工艺的RC张弛振荡器的研究与设计[D]. 广州: 华南理工大学, 2023.
CHEN D Q. Research and design of RC relaxation oscillator based on CMOS technology[D]. Guangzhou: South China University of Technology, 2023 (in Chinese).
[5]
顾博. 面向物联网应用的低功耗压控振荡器设计[D]. 南京: 东南大学, 2020.
GU B. Design of Low Power Voltage Controlled Oscillators for IoT Applications[D]. Nanjing: Southeast University, 2020 (in Chinese).
[6]
韦雪明, 赵洪飞. 一种DC-DC开关变换器的片内RC振荡器[J]. 微电子学, 2017, 47(4):5.
WEI X M, ZHAO H F. On chip RC oscillator for a DC-DC switching converter[J]. Microelectronics, 2017, 47(4):5 (in Chinese).
[7]
范旭东. 一种基于RC振荡器的片上温度传感器设计[D]. 杭州: 杭州电子科技大学, 2017.
FAN X D. Design of on-chip temperature sensor based on RC oscillator[D]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2017 (in Chinese).
[8]
K W CHENG, S K CHANG, B S LI, et al. Design and Analysis of a Resistive Frequency-Locked Oscillator With Long-Term Stability Using Double Chopper Stabilization[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2023, 70(2):655-666.
[9]
H Jiang, P P Wang, P P Mercier, et al. A 0.4V 0.93nW/kHz Relaxation Oscillator Exploiting Comparator Temperature-Dependent Delay to Achieve 94ppm/°C Stability[J]. IEEE Journal of Solid-State Circuits, 2018, 53(10):3004-3011.
[10]
SAVANTH A, WEDDELL A S, MYERS J, et al. A Sub-nW/kHz Relaxation Oscillator With Ratioed Reference and Sub-Clock Power Gated Comparator[J]. IEEE Journal of Solid-State Circuits, 2019(99):1-10.
[11]
T TOKAIRIN. A 280nW,100kHz,1-cycle start-up time,on-chip CMOS relaxation oscillator employing a feedforward period control scheme[C]// 2012 Symposium on VLSI Circuits (VLSIC),Honolulu,HI,USA, 2012:16-17.
[12]
HAOWEI JIANG. Ultra-Low-Power Sensors and Receivers for IoT Applications[D]. San Diego: University of California San Diego, 2018:100-108.
[13]
X SHA, P ZHENG, M STANAĆEVIĆ. 1.81 kHz Relaxation Oscillator With Forward Bias Comparator and Leakage Current Compensation Based Techniques[C]// 2021 IEEE 34th International System-on-Chip Conference (SOCC),Las Vegas,NV,USA, 2021:117-122.
[14]
P PRABHAT, G KNIGHT, S JELOKA, et al. A bulk 65nm Cortex-M0+ SoC with All-Digital Forward Body Bias for 4.3X Subthreshold Speedup[C]// 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC),Tainan,Taiwan, 2018:183-186.
[15]
A Huluvallay.A A 7 nW,1 kHz,-40-170 ℃ Relaxation Oscillator with Switch-Leakage Compensation for Low-Power High-Temperature IoT Systems[C]// 2023 IEEE International Symposium on Circuits and Systems (ISCAS),Monterey,CA,USA, 2023:1-5.

基金

中央高校基本科研业务费基金(XJSJ23046)
西安电子科技大学创新基金(YJS2213)

编辑: 薛士然
PDF(7419 KB)

Accesses

Citation

Detail

段落导航
相关文章

/