宇航环境下基于RHBD的SRAM抗双节点翻转研究综述

帅威, 蔡烁, 陈俊伊, 陈俊哲, 梁鑫杰, 黄珠, 魏懋萱

集成电路与嵌入式系统 ›› 2026, Vol. 26 ›› Issue (3) : 20-33.

PDF(9724 KB)
PDF(9724 KB)
集成电路与嵌入式系统 ›› 2026, Vol. 26 ›› Issue (3) : 20-33. DOI: 10.20193/j.ices2097-4191.2025.0097
第九届全国大学生集成电路创新创业大赛优秀作品专刊

宇航环境下基于RHBD的SRAM抗双节点翻转研究综述

作者信息 +

A review of RHBD-based SRAM design against double node upsets in space environment

Author information +
文章历史 +

摘要

在宇航等高可靠性应用环境中,由辐射引发的多节点翻转已成为影响静态随机存储器稳定性的关键因素。近年来,针对双节点翻转问题,基于辐射加固设计策略的多种抗干扰结构被提出并得到广泛研究,典型的如S8P8N、QUCCE12T、SARP12T、HRLP16T、RH20T、S6P8N与RH14T等。文中系统回顾了现有RHBD型SRAM结构在DNU容错方面的设计理念与关键性能指标,梳理其在可靠性、功耗、面积、访问速度及静态稳定性等方面的优势与局限,并对比分析不同设计策略的适用场景。最后,指出当前RHBD结构在细粒度容错控制与综合性能平衡方面仍面临的挑战,未来设计可在电荷传播路径抑制、反馈机制优化等方向进一步突破。

Abstract

In high-reliability applications such as aerospace, satellite communication, and nuclear control systems, multiple node upsets (MNUs) induced by radiation have become a major threat to the stability of static random access memory (SRAM). In recent years, to address the double node upset (DNU) issue, various radiation-hardened-by-design (RHBD) structures have been proposed and extensively studied, including S8P8N, QUCCE12T, SARP12T, HRLP16T, RH20T, S6P8N, and RH14T.This paper provides a comprehensive review of RHBD-based SRAM designs with a focus on their fault-tolerance mechanisms against DNU events. The key design principles, performance metrics, and trade-offs among reliability, power consumption, area, access time, and static stability are summarized and compared. Finally, the paper points out that existing RHBD structures still face challenges in achieving fine-grained fault tolerance and balanced overall performance. Future development may focus on charge propagation suppression and feedback mechanism optimization to further enhance DNU resilience.

关键词

SRAM / RHBD / 双节点翻转 / 加固结构 / S8P8N / QUCCE12T / SARP12T / HRLP16T / RH20T / S6P8N / RH14T

Key words

SRAM / RHBD / double node upset / hardened structure / S8P8N / QUCCE12T / SARP12T / HRLP16T / RH20T / S6P8N / RH14T

引用本文

导出引用
帅威, 蔡烁, 陈俊伊, . 宇航环境下基于RHBD的SRAM抗双节点翻转研究综述[J]. 集成电路与嵌入式系统. 2026, 26(3): 20-33 https://doi.org/10.20193/j.ices2097-4191.2025.0097
SHUAI Wei, CAI Shuo, CHEN Junyi, et al. A review of RHBD-based SRAM design against double node upsets in space environment[J]. Integrated Circuits and Embedded Systems. 2026, 26(3): 20-33 https://doi.org/10.20193/j.ices2097-4191.2025.0097
中图分类号: TN47 (大规模集成电路、超大规模集成电路)   

参考文献

[1]
李洪辰. 集成电路单元抗单粒子电荷共享加固设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
LI H C. Research on Design of Integrated Circuit Cell for Single-Event Charge Sharing Tolerance[D]. Harbin: Harbin Institute of Technology, 2022(in Chinese).
[2]
BEDINGFIELD K L, LEACH R D. Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment[J]. national aeronautics & space administration nasa reference publication, 1996(1390).
[3]
陈盘训. 半导体器件和集成电路的辐射效应[M]. 北京: 国防工业出版社, 2005:86-95.
CHEN P X. Radiation Effects on Semiconductor Devices and Integrated Circuits[M]. Beijing: NationalDefense Industry Press, 2005:86-95(in Chinese).
[4]
杨善潮, 齐超, 刘岩, 等. 中子单粒子效应研究现状及进展[J]. 强激光与粒子束, 2015, 27(11):10-16.
YANG S C, QI C, LIU Y, et al. Review of neutron induced single event effects on semiconductor devices[J]. High Power Laser and Particle Beams, 2015, 27(11):10-16(in Chinese).
[5]
闫爱斌. 集成电路器件抗辐射加固设计技术[M]. 北京: 科学出版社, 2023.
YAN A B. Radiation Hardening Design Techniques for Integrated Circuit Devices[M]. Beijing: Science Press, 2023(in Chinese).
[6]
黄茂航. 面向可容错系统的低压SRAM 电路研究与设计[D]. 成都: 电子科技大学, 2022.
HUANG M H. Research and Design of Low-Voltage SRAM Circuit for Error-Tolerated Applications[D]. Chengdu: University of Electronic Science and Technology of China, 2022(in Chinese).
[7]
A B KAHNG. The ITRS Design Technology and System Drivers Roadmap: Process and Status[C]// 2013 50th ACM/EDAC/IEEE Design Auto-mation Conference (DAC).Austin,TX,USA, 2013:1-6.
[8]
M C CASEY, S D STANSBERRY, C M SEIDLECK, et al. Single-Event Response of 22nm Fully Depleted Silicon-on-Insulator Static Random Access Memory[J]. IEEE Transactions on Nuclear Science, 2021, 68(4): 402-409.
[9]
L ATIAS, A TEMAN, R GITERMAN, et al. A Low-Voltage Radiation-Hardened 13T SRAM Bitcell for Ultralow Power Space Applications[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(8):2622-2633.
[10]
S PAL, G CHOWDARY, W H KI, et al. Energy-Efficient Dual-Node-Upset-Recoverable 12T SRAM for Low-Power Aerospace Applications[J]. IEEE Access, 2022, 11:20184-20195.
[11]
PAVAN KUMAR M, LORENZO R. A review on radiation-hardened memory cells for space and terrestrial applications[J]. International journal of circuit theory and applications, 2023, 51(1):475-499.
[12]
DING L, CAI C, CHEN G, et al. Characterization of Single Event Upsets of Nanoscale FDSOI Circuits Based on the Simulation and Irradiation Results[C]// 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin,TX,USA, 2022:2281-2285.
[13]
N R CH, B GUPTA, G KAUSHAL. Single-Event Multiple Effect Tolerant RHBD14T SRAM Cell Design for Space Applications[J]. IEEE Transactions on Device and Materials Reliability, 2021, 21(1):48-56.
[14]
M D'ALESSIO, M OTTAVI, F LOMBARDI. Design of a Nanometric CMOS Memory Cell for Hardening to a Single Event With a Multiple-Node Upset[J]. IEEE Transactions on Device and Materials Reliability, 2012, 14(1):127-132.
[15]
YOSHIMOTO S. A study on circuit design for low-voltage and soft-error resilient SRAM in nanometer CMOS technology[D]. Kobe University, 2013.
[16]
杜易展. SRAM型存储器单粒子翻转加固技术研究[D]. 西安: 西安电子科技大学, 2023.
DU Y Z. Research on Single Event Upset Hardened Technology of SRAM Memory[D]. Xi’an: Xidian University, 2023(in Chinese).
[17]
CHEN H, CHEN J, YAO L. Characterization of single-event multiple cell upsets in a custom SRAM in a 65 nm triple-well CMOS technology[J]. Science China Technological Sciences, 2015, 58:1726-1730.
[18]
黄正峰, 李雪筠, 杨潇, 等. 一种新型低功耗加固 SRAM 存储单元[J]. Microelectronics, 2021, 51(2):157-162.
HUANG Z F, LI X Y, YANG X, et al. A Novel Low Power Radiation Hardened SRAM Memory Cell[J]. Microelectronics, 2021, 51(2):157-162(in Chinese).
[19]
ZHAO Q, DONG H, PENG C, et al. Write-enhanced and radiation-hardened sram for multi-node upset tolerance in space-radiation environments[J]. International Journal of Circuit Theory and Applications, 2023, 51(1):398-409.
[20]
黄家提. 基于65 nm体硅 CMOS 工艺下抗辐射SRAM单元设计加固方法的研究[D]. 合肥: 安徽大学, 2019.
HUANG J T. Research of Design Reinforcement Method for Radiation-Hardened SRAM Cell Based on 65 nm Bulk Silicon CMOS Process[D]. Hefei: Anhui University, 2019(in Chinese).
[21]
李同德, 赵元富, 王亮, 等. 28 nm体硅工艺组合逻辑电路单粒子瞬态脉冲宽度研究[J]. 现代应用物理, 2022, 13(1):109-113.
LI T D, ZHAO Y F, WANG L, et al. Investigation of single event transient pulse width on 28 nm bulk CMOS combinational logic circuits[J]. Modern Applied Physics, 2022, 13(1):109-113(in Chinese).
[22]
BLACK J D, DODD P E, WARREN K M. Physics of multiple-node charge collection and impacts on singleevent characterization and soft error rate prediction[J]. IEEE Transactions on Nuclear Science, 2013, 60(3):1836-1851.
[23]
CALIN T, NICOLAIDIS M, VELAZCO R. Upset hardened memory design for submicron CMOS technology[J]. IEEE Transactions on nuclear science, 1996, 43(6):2874-2878.
[24]
JIANG J, XU Y, ZHU W, et al. Quadruple cross-coupled latch-based 10T and 12T SRAM bit-cell designs for highly reliable terrestrial applications[J]. IEEE Trans. Circuits Syst. I, 2019, 66(3):967-977.
[25]
BAI N, XIAO X, XU Y, et al. Soft-error-aware SRAM with multi-node upset tolerance for aerospace applications[J]. IEEE Trans. VLSI Syst., 2024, 32(1):128-136.
[26]
S PAL, W H KI, C Y TSUI. Soft-error-aware read-stability-enhanced low-power 12T SRAM with multi-node upset recoverability for aerospace applications[J]. IEEE Trans. Circuits Syst. I, 2022, 69(4):1560-1570.
[27]
BAI N, ZHAO W, XU Y, et al. A low-energy critical charge-enhanced SRAM for aerospace applications[C]// Proc. IEEE Int. Test Conf. Asia (ITC-Asia),Changsha, China, 2024:1-6.
[28]
YAN A, WEN Y, XIE Z, et al. Design of a highly reliable and low-power SRAM with double-node upset recovery for safety-critical applications[C]// Proc. IEEE Int. Test Conf. Asia (ITC-Asia),Matsue,Japan, 2023:1-6.
[29]
CAI S, LIANG X, WEN Y, et al. A radiation-hardened 20T SRAM cell with high reliability and low power consumption[C]// Proc. IEEE Int. Test Conf. Asia (ITC-Asia), Changsha, China, 2024:1-6.
[30]
CAI S, LIANG X, HUANG Z, et al. Low-power and high-speed SRAM cells with double-node upset self-recovery for reliable applications[J]. IEEE Trans. VLSI Syst., 2025, 33(2):475-487.
[31]
LI H, XIAO L, QI C, et al. Design of high-reliability memory cell to mitigate single event multiple node upsets[J]. IEEE Trans. Circuits Syst. I, 2021, 68(10):4170-4181.
[32]
D A BLACK, W H ROBINSON, I Z WILCOX, et al. odeling of single event transients with dual doubleexponential current sources: Implications for logic cell characterization[J]. IEEE Trans. Nucl. Sci., 2015, 62(4):1540-1549.
[33]
HU V P H, FAN M L, SU P, et al. Analysis of geoi finfet 6t sram cells with variation-tolerant wlud read-assist and tvc write-assist[J]. IEEE Transactions on Electron Devices, 2015, 62(6):1710-1715.
[34]
REDDY B N K, SARANGAM K, VEERAIAH T, et al. Sram cell with better read and write stability with minimum area[C]// TENCON 2019-2019 IEEE Region 10 Conference (TENCON). IEEE, 2019:2164-2167.
[35]
PENG C, HUANG J, LIU C, et al. Radiation-hardened 14t sram bitcell with speed and power optimized for space application[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 27(2):407-415.
[36]
RAJI M, GHAVAMI B. Soft error rate reduction of combinational circuits using gate sizing in the presence of process variations[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 25(1):247-260.
[37]
S PAL, D D SRI, W H KI, et al. Soft-error resilient read decoupled SRAM with multi-node upset recovery for space applications[J]. IEEE Trans. Electron Devices, 2021, 68(5):2246-2254.
[38]
尹勋钊, 岳金山, 黄庆荣, 等. 存算一体电路与跨层次协同设计优化:从SRAM到铁电晶体管[J]. 中国科学:信息科学, 2022, 52(4):612-638.
YIN X Z, YUE J S, HUANG Q R, et al. Computing-in-memory circuits and cross-layer integrated design and optimization: from SRAM to FeFET[J]. Scientia Sinica Informations, 2022, 52(4):612-638(in Chinese).
[39]
叶乐, 贾天宇, 陈沛毓, 等. SRAM存算一体芯片研究:发展与挑战[J]. 中国科学:信息科学, 2024, 54(1):25-33.
YE L, JIA T Y, CHEN P Y, et al. SRAM-based compute-in-memory:Status and challenges[J]. Scientia Sinica Informations, 2024, 54(1):25-33(in Chinese).
[40]
崔小乐, 张世界, 张强, 等. 一种邻近层资源共享的三维堆叠存储器内建自修复策略[J]. 计算机学报, 2017, 40(9):2030-2039.
CUI X L, ZHANG S J, ZHANG Q, et al. A BISR scheme for 3D stacked memory by sharing adjacent redundancy cells across dies[J]. Chinese Journal of Computers, 2017, 40(9):2030-2039(in Chinese).
[41]
张章, 施刚, 王启帆, 等. 基于SRAM和NVM的存内计算技术综述[J]. 计算机研究与发展, 2024, 61(12):2937-2951.
ZHANG Z, SHI G, WANG Q F, et al. Survey of in-memory computing technology based on SRAM and non-volatile memory[J]. Journal of Computer Research and Development, 2024, 61(12):2937-2951(in Chinese).
[42]
蔺智挺, 徐田, 童忠瑱, 等. 基于静态随机存取存储器的存内计算研究进展[J]. 电子与信息学报, 2022, 44(11):4041-4057.
LIN Z T, XU T, TONG Z Z, et al. Research on Progress of Computing In-Memory Based on Static Random-Access Memory[J]. Journal of Electronics and Information Technology, 2022, 44(11):4041-4057(in Chinese).
[43]
杨兴华, 杨子翼, 苏海津, 等. 基于SRAM的感存算一体化技术综述[J]. 电子与信息学报, 2023, 45(8):2828-2838.
YANG X H, YANG Z Y, SU H J, et al. Review of the Fused Technology of Sensing,Storage and Computing Based on SRAM[J]. Journal of Electronics and Information Technology, 2023, 45(8):2828-2838(in Chinese).
[44]
LIN Z, TONG Z, ZHANG J, et al. A review on SRAM-based computing in-memory: Circuits,functions, and applications[J]. Journal of Semiconductors, 2022, 43(3):26-50.
[45]
杜禧瑞, 尹国栋, 陈一鸣, 等. ROM-SRAM混合存内计算架构综述[J]. 集成电路与嵌入式系统, 2025, 25(8):10-22.
摘要
神经网络是人工智能的代表性算法,然而其庞大的参数量对其在边缘端的硬件部署提出了新的挑战。在边缘端,一方面,为了应用的灵活性,要求计算硬件能够通过模型参数的微调来实现网络在任务间的迁移;另一方面,为了计算能效和性能,需要实现大容量的片上存储以减少片外访存开销。近期提出的ROM-SRAM混合存内计算架构是在成熟CMOS工艺下很有潜力的一种方案。得益于高密度ROM存内计算,神经网络的大部分权重可以部署在片内而不依赖片外访存;与此同时,SRAM存内计算可以为基于高密度ROM的边缘端存内计算提供灵活性。为了扩展ROM-SRAM混合存内计算架构设计和应用的空间,需要进一步提高ROM存内计算的密度以支持更大的网络,并探索通过少量SRAM存内计算获得更大灵活性的方案。文中介绍了几种常见的提升ROM存内计算密度的方法,以及基于ROM-SRAM混合存内计算架构的神经网络微调以提升灵活性的方法,并讨论了超大规模神经网络的部署方案和长序列大语言模型中遇到的动态矩阵乘瓶颈的解决方案,展望了ROM-SRAM混合存内计算架构广阔的设计空间和应用前景。
DU X R, YIN G D, CHEN Y M, et al. A review on ROM-SRAM hybrid compute in memory architecture[J]. Integrated Circuits and Embedded Systems, 2025, 25(8):10-22(in Chinese).
[46]
束宇豪, 李怡霏, 王禁城, 等. 低温存内计算芯片设计研究综述[J]. 集成电路与嵌入式系统, 2025, 25(8):23-30.
摘要
随着人工智能、量子计算等前沿技术的快速发展,对高性能计算芯片的需求不断提升。然而,传统冯·诺依曼架构受限于存储墙和功耗墙等因素,已难以满足数据密集型计算应用的算力需求。低温存内计算结合了低温CMOS器件的优异电学特性与存内计算架构的高带宽、低延迟优势,为突破算力瓶颈提供了一种新的解决方案。综述了低温环境下CMOS器件及多种存储介质的关键特性,系统梳理了低温存内计算在人工智能与量子计算领域的典型架构、关键实现及性能表现,并分析了其在器件工艺、电路系统、EDA工具等层面的挑战及未来发展趋势。
SHU Y H, LI Y F, WANG J C, et al. Review on cryogenic in-memory computing chip design[J]. Integrated Circuits and Embedded Systems, 2025, 25(8):23-30(in Chinese).

With the rapid advancement of cutting-edge technologies such as artificial intelligence and quantum computing, the demand for high-performance computing chips continues to increase. However, traditional von Neumann architectures are increasingly constrained by the memory wall and power wall, making it difficult to meet the computing demands of data-intensive applications. Cryogenic in-memory computing combines the superior electrical properties of cryogenic CMOS devices with the high bandwidth and low latency advantages of in-memory computing architectures, providing a new solution to overcome computing bottlenecks. This review summarizes the key characteristics of CMOS devices and various memory media at cryogenic temperatures, systematically reviews representative architectures, key implementations, and performance metrics of cryogenic in-memory computing in the fields of artificial intelligence and quantum computing. Moreover, this review analyzes the challenges and development trends at the levels of device technology, circuit systems, and EDA tools.

[47]
龚龙庆, 徐伟栋, 娄冕. SRAM存内计算技术综述[J]. 微电子学与计算机, 2021, 38(9):1-7.
GONG L Q, XU W D, LOU M. An overview of SRAM in-memory computing[J]. Microelectronics & Computer, 2021, 38(9):1-7(in Chinese).
[48]
闫爱斌, 李坤, 黄正峰, 等. 两种面向宇航应用的高可靠性抗辐射加固技术静态随机存储器单元[J]. 电子与信息学报, 2024, 46(10):4072-4080.
YAN A B, LI K, HUANG Z F, et al. Two highly reliable radiation hardened by design static random access memory cells for aerospace applications[J]. Journal of Electronics and Information Technology, 2024, 46(10):4072-4080(in Chinese).
[49]
柏娜, 李钢, 许耀华, 等. 应用于航空航天领域的低功耗多节点抗辐射静态随机存取存储器设计[J]. 电子与信息学报, 2025, 47(3):850-858.
BAI N, LI G, XU Y H, et al. Low-Power Multi-Node Radiation-Hardened SRAM Design for Aerospace Applications[J]. Journal of Electronics and Information Technology, 2025, 47(3):850-858(in Chinese).
[50]
杨旭, 范煜川, 范宝峡. 龙芯X微处理器抗辐照加固设计[J]. 中国科学:信息科学, 2015, 45(4):501-512.
YANG X, FAN Y C, FAN B X. Loongson X-CPU radiation hardening by design[J]. Scientia Sinica Informations, 2015, 45(4):501-512(in Chinese).

基金

国家自然科学基金面上项目(62172058)

PDF(9724 KB)

Accesses

Citation

Detail

段落导航
相关文章

/