PDF(4045 KB)
GA-JIT Scheduler:严格JIT约束下的晶圆制造动态调度算法
刘鸣蒹, 颜孔汗, 王嘉奇, 冯超超, 隋兵才
集成电路与嵌入式系统 ›› 2026, Vol. 26 ›› Issue (2) : 14-23.
PDF(4045 KB)
PDF(4045 KB)
GA-JIT Scheduler:严格JIT约束下的晶圆制造动态调度算法
GA-JIT scheduler: a dynamic scheduling algorithm for wafer manufacturing under strict JIT constraints
晶圆制造过程具有多模块协同、强时序约束等特征,传统方法在高混合生产场景下面临适应性差、约束协同困难等问题。针对严格准时制(JIT)约束下晶圆制造动态调度难题,提出一种基于遗传算法的高效动态调度方案—GA-JIT Scheduler,通过有向图建模将JIT等复杂约束编码至适应度函数,结合时间窗口检测与遗传进化策略,构建“感知-决策-执行”闭环调优机制,实现对动态扰动的快速响应。以“第九届集创赛·北方华创杯”4个差异化调度任务验证GA-JIT Scheduler,测得4个任务求解时间分别为93 256.5 s、15 311.5 s、13 013.5 s、18 470 s。该算法满足设备独占性及JIT(移动≤30 s、驻留≤15 s)约束,适配多场景,验证了其在严格JIT约束下晶圆制造动态调度的工程适用性与扩展性,为高混合、强时序约束的晶圆制造提供可行方案。
Wafer manufacturing involves multi-module coordination and strong temporal constraints. Traditional scheduling methods struggle in high-mix production scenarios due to poor adaptability and difficulty in handling complex constraints. To address the dynamic scheduling challenges under strict Just-in-Time (JIT) constraints, this paper proposes an efficient dynamic scheduling scheme named GA-JIT Scheduler, based on a genetic algorithm. The approach models equipment and processes using directed graphs, encoding JIT and other complex constraints into a fitness function. By integrating time-window detection and genetic evolution strategies, a "perception-decision-execution" closed-loop tuning mechanism is constructed to enable rapid responses to dynamic disturbances. This paper verifies the GA-JIT Scheduler using 4 differentiated scheduling tasks from the "9th National Innovation Competition (BeiFang HuaChuang Cup)", with the measured solution times of the four tasks being 93 256.5 s, 15 311.5 s, 13 013.5 s, and 18 470 s respectively. The algorithm satisfies constraints such as equipment exclusivity and JIT (movement≤30 s, residence time ≤15 s), adapts to multiple scenarios, verifies its engineering applicability and scalability in the dynamic scheduling of wafer manufacturing under strict JIT constraints, and provides a feasible solution for wafer manufacturing with high mix and strong temporal constraints.
晶圆制造 / 动态调度 / 准时制生产 / 遗传算法 / 半导体设备调度
wafer manufacturing / dynamic scheduling / just-in-time production / genetic algorithm / semiconductor equipment scheduling
| [1] |
袁凤连, 黄波, 王际鹏, 等. 基于petri网的组合设备建模与调度综述[J]. 自动化学报, 2023, 49(5):929-948.
|
| [2] |
陈权. 基于petri网可达树的组合设备调度和控制[D]. 西安: 西安电子科技大学, 2023.
|
| [3] |
潘春荣, 周浩, 熊文清, 等. 晶圆驻留时间约束下双组合设备协同调度[J]. 信息与控制, 2024, 53(6):804-816.
|
| [4] |
马利平, 刘玉敏, 赵艳平, 等. 考虑晶圆驻留时间约束的双臂组合设备群调度[J]. 制造技术与机床, 2024(2):59-66.
|
| [5] |
朱清华, 潘泓廷. 双臂机械手组合设备在清洁情况下的调度优化[J]. 控制理论与应用,网络首发时间:2024-03-05.
|
| [6] |
于绍琪. 多AGV系统的petri网建模和多智能体强化学习路径规划[D]. 杭州: 杭州电子科技大学, 2024.
|
| [7] |
焦刘飞. 基于petri网和启发式搜索的柔性制造系统调度问题的研究[D]. 西安: 西安电子科技大学, 2019.
|
| [8] |
李诚. 基于petri网和启发式搜索的调度算法研究[D]. 杭州: 浙江大学, 2015.
|
| [9] |
牛云飞. 基于petri网和强化学习的半导体制造系统调度问题研究[D]. 西安: 西安电子科技大学, 2024.
|
| [10] |
周润宇. 基于petri网添加时间约束的调度算法研究[D]. 西安: 西安电子科技大学, 2023.
|
| [11] |
于绍琪, 田玉平. 晶圆驻留时间约束下双组合设备协同调度[J]. 控制与决策, 2025, 40(5):1438-1446.
|
| [12] |
龙志强. 基于哈里斯鹰算法的组合设备优化调度[D]. 赣州: 江西理工大学, 2022.
|
| [13] |
李诚, 李爽, 冯毅萍, 等. 基于时间petri网和启发式搜索的柔性制造系统调度算法[J]. 上海交通大学学报, 2015, 49(5):708-713.
|
| [14] |
superhqh. FJSP[EB/OL].(2020-04-06)[2025-12-06]. https://github.com/superhqh/FJSP.
|
| [15] |
FrWalkerCn. Scheduling-method-for-cluster-tools[EB/OL].(2025-03-03)[2025-12-06]. https://github.com/FrWalkerCn/Scheduling-method-for-cluster-tools.
|
/
| 〈 |
|
〉 |