基于飞腾派的低功耗水质监测与云端协同系统

刘家麒, 刘家麟, 陈东

集成电路与嵌入式系统 ›› 2026, Vol. 26 ›› Issue (2) : 81-90.

PDF(1148 KB)
PDF(1148 KB)
集成电路与嵌入式系统 ›› 2026, Vol. 26 ›› Issue (2) : 81-90. DOI: 10.20193/j.ices2097-4191.2025.0110
第九届全国大学生集成电路创新创业大赛优秀作品专刊

基于飞腾派的低功耗水质监测与云端协同系统

作者信息 +

Low-power water quality monitoring and cloud collaboration system based on Phytium Pi

Author information +
文章历史 +

摘要

针对传统水质监测设备成本高昂、功耗高、数据协同能力薄弱及扩展性不足等问题,设计并实现了一套基于飞腾派CEK8903的低功耗水质监测与云端协同系统。系统以全国产化飞腾派开发板为核心控制单元,集成 TS-200型pH传感器、TS-300B型浊度传感器及DS18B20 温度传感器构建感知网络,通过动态电压与频率调整(DVFS)技术实现硬件级低功耗优化[1]。本地采用软件模拟 I2C 驱动的 OLED 显示模块,通过 UART 协议完成飞腾派与Arduino 的跨设备数据交互;云端依托 Flask+Socket.IO 架构搭建了前后端分离服务,借助 HTTP/Socket.IO 双协议实现“边缘设备—云端平台—用户终端”全链路数据的同步。系统支持传感器即插即用扩展与分层容错机制,用户可通过 Web 端(PC/移动端)或本地 OLED 屏实时获取pH值、浊度、水体温度等核心参数,参数异常时系统触发多级预警。经72小时实验室标定与野外模拟测试验证:系统待机功耗低至 0.48 W(仅为传统设备的 1/10),pH测量相对误差≤0.78%,浊度检测精度 ±30 NTU,全链路数据传输延迟≤1 s,数据丢包率 < 0.1%。该系统突破了野外长期监测的能源约束与数据孤岛瓶颈,为河流水质监管、水产养殖精细化管理及工业废水排放监测等场景提供了低成本、高可靠的国产化解决方案,具有一定的实用价值。

Abstract

Aiming at the industry pain points of traditional water quality monitoring equipment, such as high cost, redundant power consumption, weak data collaboration capability and insufficient scalability, this paper designs and implements a low-power water quality monitoring and cloud collaboration system based on Phytium Pi CEK8903. The system uses the fully localized Phytium Pi development board as the core control unit, integrates TS-200 pH sensor, TS-300B turbidity sensor and DS18B20 temperature sensor to build a perception network, and realizes hardware-level low-power optimization through Dynamic Voltage and Frequency Scaling (DVFS) technology. Locally, the software simulates I2C to drive the OLED display module, and realizes cross-device data interaction between Phytium Pi and Arduino through UART protocol, the cloud builds a front-end and back-end separation service based on Flask+Socket.IO architecture, and realizes full-link data synchronization of "edge device-cloud platform-user terminal" with the help of HTTP/Socket.IO dual protocols. The system supports plug-and-play expansion of sensors and hierarchical fault tolerance mechanism. Users can obtain real-time core parameters such as pH value, turbidity and water temperature through Web terminal (PC/mobile terminal) or local OLED screen, and trigger multi-level early warning when parameters are abnormal. Verified by 72-hour laboratory calibration and field simulation tests: standby power consumption is as low as 0.48W (only 1/10 of traditional equipment), the relative error of pH measurement is ≤0.78%, the turbidity detection accuracy is ±30 NTU, the full-link data transmission delay is ≤1 second, and the data packet loss rate is <0.1%. The system breaks through the energy constraints and data island bottlenecks of long-term field monitoring, provides a low-cost and high-reliability nationalized solution for river water quality supervision, refined aquaculture management and industrial wastewater discharge monitoring, and has significant practical value.

关键词

飞腾派 CEK8903 / 水质监测 / 云端协同 / Socket.IO / 动态电压频率调整

Key words

Phytium Pi CEK8903 / water quality monitoring / cloud collaboration / Socket.IO / dynamic voltage and frequency scaling

引用本文

导出引用
刘家麒, 刘家麟, 陈东. 基于飞腾派的低功耗水质监测与云端协同系统[J]. 集成电路与嵌入式系统. 2026, 26(2): 81-90 https://doi.org/10.20193/j.ices2097-4191.2025.0110
LIU Jiaqi, LIU Jialin, CHEN Dong. Low-power water quality monitoring and cloud collaboration system based on Phytium Pi[J]. Integrated Circuits and Embedded Systems. 2026, 26(2): 81-90 https://doi.org/10.20193/j.ices2097-4191.2025.0110
中图分类号: TP277.2   

参考文献

[1]
王胜, 徐文祥, 尹志杰. 基于异构多核处理器的DVFS技术研究[J]. 通信技术, 2017, 50(3):565-570.
WANG S, XU W X, YIN Z J. Research on DVFS Technology Based on Heterogeneous Multi-core Processors[J]. Communications Technology, 2017, 50(3):565-570(in Chinese).
[2]
曹可欣. 面向水质监测的多变量时序数据异常检测研究[D]. 廊坊: 华北科技学院, 2025.
CAO K X. Research on Multivariate Time Series Data Anomaly Detection for Water Quality Monitoring[D]. Langfang: North China Institute of Science and Technology, 2025(in Chinese).
[3]
王越, 李立伟, 刘含筱. 数字式高精度智能电流传感器设计[J]. 仪表技术与传感器, 2022(5):10-14.
WANG Y, LI L W, LIU H X. Design of Digital High-Precision Intelligent Current Sensor[J]. Instrument Technique and Sensor, 2022(5):10-14(in Chinese).
[4]
陈文艺, 张霏, 龙艳. 基于Socket.IO的物联网网关实时双向通信系统[J]. 西安邮电大学学报, 2017, 22(6):111-116.
CHEN W Y, ZHANG F, LONG Y. A Real-Time Bidirectional Communication System for IoT Gateway Based on Socket.IO[J]. Journal of Xi’an University of Posts and Telecommunications, 2017, 22(6):111-116(in Chinese).
[5]
李星. 基于SQLite的建筑材料性能数据库的设计与实现[J]. 工程与试验, 2025, 65(1):83-85.
LI X. Design and Implementation of Building Material Performance Database Based on SQLite[J]. Engineering & Test, 2025, 65(1):83-85(in Chinese).
[6]
周前毅, 段方, 陈敏华, 等. 基于温度补偿技术的超低温漂电流源[J]. 中国集成电路, 2025, 34(11):41-45.
ZHOU Q Y, DUAN F, CHEN M H, et al. Ultra-Low Temperature Drift Current Source Based on Temperature Compensation Technology[J]. China Integrated Circuit, 2025, 34(11):41-45(in Chinese).
[7]
李天昊, 袁雪丰. 嵌入式Linux环境下ARM的低功耗设计与实现策略[C]// 2025中国建筑经济研讨会论文集(上册). 河南省豫商经济文化交流协会, 2025:89-90.
LI T H, YUAN X F. Low-Power Design and Implementation Strategy for ARM in Embedded Linux Environment[C]// Proceedings of the 2025 China Construction Economics Symposium (Volume I).Henan Yushang Economic and Cultural Exchange Association, 2025:89-90(in Chinese).
[8]
唐琪. 面向云边协同的资源监控与调度的研究与实现[D]. 成都: 电子科技大学, 2023.
TANG Q. Research and Implementation of Resource Monitoring and Scheduling for Cloud-Edge Collaboration[D]. Chengdu: University of Electronic Science and Technology of China, 2023(in Chinese).
[9]
李振华, 姜雨菲, 杜锋, 等. 基于LSTM-Transformer模型的突水条件下矿井涌水量预测[J]. 河南理工大学学报(自然科学版), 2026, 45 (1):77-85.
LI Z H, JIANG Y F, DU F, et al. Prediction of Mine Water Inflow under Water Inrush Conditions Based on LSTM-Transformer Model[J]. Journal of Henan Polytechnic University (Natural Science), 2026, 45(1):77-85(in Chinese).

PDF(1148 KB)

Accesses

Citation

Detail

段落导航
相关文章

/