PDF(1148 KB)
PDF(1148 KB)
PDF(1148 KB)
基于飞腾派的低功耗水质监测与云端协同系统
Low-power water quality monitoring and cloud collaboration system based on Phytium Pi
针对传统水质监测设备成本高昂、功耗高、数据协同能力薄弱及扩展性不足等问题,设计并实现了一套基于飞腾派CEK8903的低功耗水质监测与云端协同系统。系统以全国产化飞腾派开发板为核心控制单元,集成 TS-200型pH传感器、TS-300B型浊度传感器及DS18B20 温度传感器构建感知网络,通过动态电压与频率调整(DVFS)技术实现硬件级低功耗优化[
Aiming at the industry pain points of traditional water quality monitoring equipment, such as high cost, redundant power consumption, weak data collaboration capability and insufficient scalability, this paper designs and implements a low-power water quality monitoring and cloud collaboration system based on Phytium Pi CEK8903. The system uses the fully localized Phytium Pi development board as the core control unit, integrates TS-200 pH sensor, TS-300B turbidity sensor and DS18B20 temperature sensor to build a perception network, and realizes hardware-level low-power optimization through Dynamic Voltage and Frequency Scaling (DVFS) technology. Locally, the software simulates I2C to drive the OLED display module, and realizes cross-device data interaction between Phytium Pi and Arduino through UART protocol, the cloud builds a front-end and back-end separation service based on Flask+Socket.IO architecture, and realizes full-link data synchronization of "edge device-cloud platform-user terminal" with the help of HTTP/Socket.IO dual protocols. The system supports plug-and-play expansion of sensors and hierarchical fault tolerance mechanism. Users can obtain real-time core parameters such as pH value, turbidity and water temperature through Web terminal (PC/mobile terminal) or local OLED screen, and trigger multi-level early warning when parameters are abnormal. Verified by 72-hour laboratory calibration and field simulation tests: standby power consumption is as low as 0.48W (only 1/10 of traditional equipment), the relative error of pH measurement is ≤0.78%, the turbidity detection accuracy is ±30 NTU, the full-link data transmission delay is ≤1 second, and the data packet loss rate is <0.1%. The system breaks through the energy constraints and data island bottlenecks of long-term field monitoring, provides a low-cost and high-reliability nationalized solution for river water quality supervision, refined aquaculture management and industrial wastewater discharge monitoring, and has significant practical value.
飞腾派 CEK8903 / 水质监测 / 云端协同 / Socket.IO / 动态电压频率调整
Phytium Pi CEK8903 / water quality monitoring / cloud collaboration / Socket.IO / dynamic voltage and frequency scaling
| [1] |
王胜, 徐文祥, 尹志杰. 基于异构多核处理器的DVFS技术研究[J]. 通信技术, 2017, 50(3):565-570.
|
| [2] |
曹可欣. 面向水质监测的多变量时序数据异常检测研究[D]. 廊坊: 华北科技学院, 2025.
|
| [3] |
王越, 李立伟, 刘含筱. 数字式高精度智能电流传感器设计[J]. 仪表技术与传感器, 2022(5):10-14.
|
| [4] |
陈文艺, 张霏, 龙艳. 基于Socket.IO的物联网网关实时双向通信系统[J]. 西安邮电大学学报, 2017, 22(6):111-116.
|
| [5] |
李星. 基于SQLite的建筑材料性能数据库的设计与实现[J]. 工程与试验, 2025, 65(1):83-85.
|
| [6] |
周前毅, 段方, 陈敏华, 等. 基于温度补偿技术的超低温漂电流源[J]. 中国集成电路, 2025, 34(11):41-45.
|
| [7] |
李天昊, 袁雪丰. 嵌入式Linux环境下ARM的低功耗设计与实现策略[C]// 2025中国建筑经济研讨会论文集(上册). 河南省豫商经济文化交流协会, 2025:89-90.
|
| [8] |
唐琪. 面向云边协同的资源监控与调度的研究与实现[D]. 成都: 电子科技大学, 2023.
|
| [9] |
李振华, 姜雨菲, 杜锋, 等. 基于LSTM-Transformer模型的突水条件下矿井涌水量预测[J]. 河南理工大学学报(自然科学版), 2026, 45 (1):77-85.
|
/
| 〈 |
|
〉 |