PDF(5145 KB)
PDF(5145 KB)
PDF(5145 KB)
基于国产FPGA加速的物流分拣机器人设计
Design of logistics sorting robot based on domestic FPGA acceleration
针对仓储物流机器人智能化发展中对高实时运动控制与多轴协同精度优化的需求,设计并实现了一套基于国产FPGA加速物流分拣机器人系统。系统核心在于对关键算法进行硬件级优化:利用定制化ISP模块处理实现分拣目标识别,结合硬件加速的CORDIC算法高效完成逆运动学解算,保障机械臂准确抓取;采用融合卡尔曼滤波的串级PID算法生成高精度的多通道PWM信号,驱动移动平台精确送达。此外,系统还集成了触摸屏人机交互功能以及基于LoRa通信与超声波测距反馈的双臂协同搬运策略。实验结果表明,机械臂单次作业周期优化至4 s,抓取准确率达90%,移动平台定位精度达厘米级,双臂协同搬运末端误差小于0.5 cm,为物流分拣领域提供了一种低成本、高可靠的国产化解决方案。
In response to the demand for high real-time motion control and multi-axis collaborative precision optimization in the intelligent development of warehouse logistics robots, a logistics sorting robot system based on domestic FPGA acceleration has been designed and implemented. The core of this system lies in hardware-level optimization of key algorithms: utilizing a customized ISP module to process and achieve sorting target recognition, combined with a hardware-accelerated CORDIC algorithm to efficiently complete inverse kinematics solution, ensuring accurate grasping by the robotic arm, employing a cascade PID algorithm integrated with Kalman filtering to generate high-precision multi-channel PWM signals, driving the mobile platform to deliver accurately. Additionally, the system integrates touchscreen human-computer interaction functions and a dual-arm collaborative handling strategy based on LoRa communication and ultrasonic ranging feedback. The experimental results show that the robotic arm's single operation cycle is optimized to 4 seconds, with a grasping accuracy rate of 90%, the mobile platform's positioning accuracy reaches the centimeter level, and the end-effector error of dual-arm collaborative handling is less than 0.5 cm. This design provides a low-cost, high-reliability domestic solution for the logistics sorting field.
物流分拣机器人 / FPGA / 图像处理 / 逆运动学 / 卡尔曼滤波 / 串级PID算法 / 双臂协同搬运
logistics sorting robot / FPGA / image processing / inverse kinematics / Kalman filter / cascade PID algorithm / dual-arm collaborative handling
| [1] |
吴洪涛, 蒋天宇, 常天佐, 等. 中国机器人产业现状与创新发展趋势综述[J]. 机械制造与自动化, 2025, 54(1):1-6.
|
| [2] |
王成军, 韦志文, 严晨. 基于机器视觉技术的分拣机器人研究综述[J]. 科学技术与工程, 2022, 22(3):893-902.
|
| [3] |
边樋锐, 张文志, 邓洁, 等. 分拣机器人的应用进展[J]. 工程机械, 2024, 55(11):209-214.
|
| [4] |
袁伟钊. 多自由度机器人控制方法研究综述[J]. 中国信息界, 2024(9):45-48.
|
| [5] |
李凯, 刘新妹, 殷俊龄, 等. FPGA的仿生机器人多路舵机控制器设计[J]. 单片机与嵌入式系统应用, 2021, 21(1):50-53,75.
|
| [6] |
张欢, 王雅欣, 王爽, 等. 基于FPGA的工业机器人技术发展历史与现状[J]. 单片机与嵌入式系统应用, 2023, 23(10):31-35.
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
刘宇祥, 陈枢茜, 罗嘉嘉, 等. 物流终端智能分拣机器人系统解决方案[J]. 信息电脑, 2025, 37(3):18-20.
|
| [13] |
赵放之, 段升顺, 吴俊. 基于FPGA和机器视觉的多元特征模式水果分拣系统[J]. 电子器件, 2024, 47(1):248-254.
|
| [14] |
刘成涛, 李显鹏. 姿态检测及模糊PID算法的自平衡小车[J]. 单片机与嵌入式系统应用, 2019, 19(7):78-80,85.
|
| [15] |
左兆辉, 戴群雄, 王铮. 基于导航卫星的高精度授时技术[J]. 集成电路与嵌入式系统, 2024, 24(1):78-82.
基于导航卫星授时长期稳定度高的特点,结合铷原子钟优良的短期稳定度和低漂移率特性,提出了一种高精度授时技术。以导航接收机1 PPS为基准对铷原子钟进行驯服,通过高精度时差测量、卡尔曼滤波、增量式PID算法3个关键技术对外提供高精度授时服务。验证结果表明,输出1 PPS相位稳定性达到±0.2 ns以内,驯服期间1 s稳定度达到3.76E-12。
Based on the long-term stability of navigation satellite timing,combined with the excellent short-term stability and low drift rate of rubidium atomic clock,a high-precision timing technology is proposed.It tames the rubidium atomic clock based on 1 PPS of navigation receiver to provide high-precision timing service through three key technologies:precise clock difference measurement,Kalman filtering,and incremental PID algorithm.The verification results show that the phase stability of the output 1 PPS reaches within ±0.2 ns,the stability reaches 3.76E-12 at 1 s during taming. |
| [16] |
宗少云, 朱锦添, 余韶伟, 等. 基于FPGA的智能仓储系统设计[J]. 数字通信世界, 2024(11):23-25.
|
/
| 〈 |
|
〉 |