Research on fast frequency hopping technology based on all digital phase locked loop optimization

WANG Feng, GUO Zhonghui, XU Guodong, PANG Yang, ZHANG Yimeng

Integrated Circuits and Embedded Systems ›› 2024, Vol. 24 ›› Issue (4) : 10-16.

PDF(4353 KB)
PDF(4353 KB)
Integrated Circuits and Embedded Systems ›› 2024, Vol. 24 ›› Issue (4) : 10-16. DOI: 10.20193/j.ices2097-4191.2024.04.002
Research Paper

Research on fast frequency hopping technology based on all digital phase locked loop optimization

Author information +
History +

Abstract

Aiming at the shortcomings of all digital phase-locked loop (ADPLL) in terms of frequency hopping time,signal quality,frequency stepping,the loop structure and digital phase-locked algorithm of ADPLL are optimized,and a new type of all digital phase-locked loop structure is designed.This structure adopts a Fast Frequency to Voltage Converter (FVC) to replace the digital frequency and phase discriminator and digital filter in ADPLL.FVC calculates the output frequency value directly by doubling the reference frequency and counting the feedback frequency,thereby determining the error between the output frequency and the target output frequency.By establishing a functional relationship between frequency error and voltage adjustment,FVC controls the fast locking of the output frequency,achieving small frequency steps and high-quality fast synthesis frequency output.Finally,the feasibility of the new all digital phase-locked loop structure has been verified through simulation and actual measurement.The actual test results show that the frequency near end spurious synthesized by this technology is -87 dBc,the minimum frequency step can reach 191 Hz,and the minimum frequency hopping time is 3.9 μs.

Key words

frequency synthesis technology / fast frequency hopping / FVC / ADPLL

Cite this article

Download Citations
WANG Feng , GUO Zhonghui , XU Guodong , et al . Research on fast frequency hopping technology based on all digital phase locked loop optimization[J]. Integrated Circuits and Embedded Systems. 2024, 24(4): 10-16 https://doi.org/10.20193/j.ices2097-4191.2024.04.002

References

[1]
CHENG Z, LI W M, ZHANG D W, et al. A high reliable low noise frequency synthesizer design[C]// 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA): IEEE:1246-1249.
[2]
李轶晖. 小型化捷变频频率合成技术研究[D]. 成都: 电子科技大学, 2023.
LI Y H. Research on miniaturized agile frequency synthesis technology[D]. Chengdu: University of Electronic Science and Technology of China, 2023. (in Chinese)
[3]
吴呈煜. 短波段频率数字合成与精确测量技术[D]. 南京: 南京理工大学, 2011.
WU CH Y. Short band frequency digital synthesis and precise measurement technology[D]. Nanjing: Nanjing University of Science and Technology, 2011. (in Chinese)
[4]
陈祥雨. 一种对小数N分频PLL的自抖动和时钟优化方法[J]. 无线电工程, 2023, 53(8):1844-1852.
CHEN X Y. A self jitter and clock optimization method for fractional N-division PLL[J]. Radio Engineering, 2023, 53(8):1844-1852. (in Chinese)
[5]
杨光, 蒋国琼, 田殷, 等. 一种基于多通道DDS的低杂散宽带频率合成器[C]// 2020年全国微波毫米波会议论文集(下册), 2020:3.
YANG G, JIANG G Q, TIAN Y, et al. A low spurious broadband frequency synthesizer based on multi-channel DDS[C]// Proceedings of the 2020 National Microwave and Millimeter Wave Conference (Volume 2), 2020:3. (in Chinese)
[6]
张博. 基于直接合成技术的通信频率源的设计与实现[C]// 2022年全国微波毫米波会议论文集(上册), 2022:3.
ZHANG B. Design and Implementation of Communication Frequency Source Based on Direct Synthesis Technology[C]// Proceedings of the 2022 National Microwave and Millimeter Wave Conference (Volume 1), 2022:3. (in Chinese)
[7]
王鹏. 基于广义二阶积分的数字锁相环设计与实现[J]. 电气技术与经济, 2022(6):41-44,71.
WANG P. Design and Implementation of Digital Phase Locked Loop Based on Generalized Second Order Integration[J]. Electrical Technology and Economics, 2022(6):41-44,71. (in Chinese)
[8]
LOTFY AMR, GHONEIMAMAGED,ABDEL-MONEUM MOHAMED. A fast locking hybrid TDC-BB ADPLL utilizing proportional derivative digital loop filter and power gated DCO[C]// International Symposium on Circuits and Systems, 2016.
[9]
张宪伟. 全数字锁相环的研究与设计[D]. 南京: 南京邮电大学, 2021.
ZHANG X W. Research and Design of Fully Digital Phase Locked Loop[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021. (in Chinese)
[10]
贾栋梁. 应用于SoC时钟的全数字锁相环的研究与设计[D]. 南京: 南京邮电大学, 2022.
JIA D L. Research and design of an all digital phase-locked loop applied to SoC clocks[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. (in Chinese)
[11]
赵林, 方益民. 基于CPLD的自动变模全数字锁相环设计及仿真[J]. 计算机仿真, 2022, 39(1):279-282.
ZHAO L, FANG Y M. Design and simulation of an automatic variable modulus all digital phase-locked loop based on CPLD[J]. Computer Simulation, 2022, 39 (1):279-282. (in Chinese)
[12]
蒋小平, 陈晓飞. 基于二阶系统阶跃响应辨识传递函数的实验设计[J]. 自动化技术与应用, 2023, 42(2):10-13.
JIANG X P, CHEN X F. Experimental design of transfer function identification based on second-order system step response[J]. Automation Technology and Applications, 2023, 42(2):10-13. (in Chinese)
[13]
胡寿松. 自动控制原理[M]. 7版. 北京: 科学出版社, 2019:247.
HU SH S. Principles of Automatic Control[M]. 7th Edition.Beijing: Science Press, 2019:247. (in Chinese)
[14]
沈梦琪. 基于DTC的小数全数字锁相环研究与设计[D]. 南京: 南京邮电大学, 2020.
SHEN M Q. Research and Design of Decimal All Digital Phase Locked Loop Based on DTC[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. (in Chinese)
[15]
林鑫. 基于小数N分频的电荷泵锁相环研究与设计[D]. 深圳: 深圳大学, 2017.
LIN X. Research and Design of Charge Pump Phase Locked Loop Based on Fractional N Division[D]. Shenzhen: Shenzhen University, 2017. (in Chinese)
PDF(4353 KB)

Accesses

Citation

Detail

Sections
Recommended

/