Research on Infrared and Visible Light Image Fusion Algorithms Based on Improving PCNN

Jiang Yanli, Liu Peipei, Zhou Huili, Tian Ye

Integrated Circuits and Embedded Systems ›› 2022, Vol. 22 ›› Issue (10) : 32-35.

PDF(3476 KB)
PDF(3476 KB)
Integrated Circuits and Embedded Systems ›› 2022, Vol. 22 ›› Issue (10) : 32-35.
TOPICAL DISCUSS

Research on Infrared and Visible Light Image Fusion Algorithms Based on Improving PCNN

  • Jiang Yanli, Liu Peipei, Zhou Huili, Tian Ye
Author information +
History +

Abstract

When infrared images and visible light images use traditional image fusion technology for image fusion, there are the problems such as blurred details and decreased contrast in the fusion image.In response to such problems,this paper proposes an image fusion method of combining NSCT through the area-ratio of pulse coupling neural network (PCNN).First of all,the two way bidding of the histogram is pre-processing the source image.Secondly,through the NSCT decomposition image,the low-frequency belt and high frequency belt are obtained.The fusion rule obtains the low-frequency fusion coefficient.Finally,the NSCT inverter replace the processing of high and low frequency fusion coefficients to obtain the fusion image.The experiment results show that the fusion algorithm of this article is superior to traditional image fusion algorithms in retaining image information and enhancing image contour information,which improves image contrast.

Key words

NSCT / PCNN / area ratio / right-directional diagram two-way equilibrium / weighted average

Cite this article

Download Citations
Jiang Yanli, Liu Peipei, Zhou Huili, Tian Ye. Research on Infrared and Visible Light Image Fusion Algorithms Based on Improving PCNN[J]. Integrated Circuits and Embedded Systems. 2022, 22(10): 32-35

References

[1] 米切尔(Mitchell,H.B.)著.图像融合:理论、技术与应用[M].李成,等译.北京:国防工业出版社,2016.
[2] Ma J,Y Ma,C Li.Infrared and visible image fusion methods and applications:A survey[J].Information Fusion,2019(45): 153178.
[3] Burt P J,E H Adelson.The Laplacian pyramid as a compact image code,in Readings in computer vision[J].Elsevier,1987:671679.
[4] Jin X.A survey of infrared and visual image fusion methods[J].Infrared Physics & Technology,2017(85):478501.
[5] Li S.Pixellevel image fusion:A survey of the state of the art[J].Information Fusion,2017(33):100112.
[6] 刘帅,王磊,郝永平,等.基于NSCT与改进PCNN的红外与可见光图像融合方法研究[J].光电技术应用,2021,36(4):6065.
[7] 谈世磊,张红民,王艳.基于NSCT和改进型PCNN的红外与可见光图像融合算法[J].红外,2015,36(6):1720,25.
[8] 王娟,柯聪,刘敏,等.神经网络框架下的红外与可见光图像融合算法综述[J].激光杂志,2020,41(7):712.
[9] Elzeki O M.A novel perceptual two layer image fusion using deep learning for imbalanced COVID19 dataset[J].PeerJ Computer Science,2021(7).
[10] Diwakar M,P Singh,A Shankar.Multimodal medical image fusion framework using cooccurrence filter and local extrema in NSST domain[J].Biomedical Signal Processing and Control,2021(68):102788.
[11] 袁先珍.一种改进的红外与可见光图像融合方法[J].科技通报,2018,34(11):150153.
[12] 裴高乐,史涛,李世星.NSCT与ARPCNN相结合的医学图像融合研究[J].激光杂志:2022(5):17.
[13] Ramlal S D,Sachdeva J,Ahuja C K,et al.Multimodal medical image fusion using nonsubsampled shearlet transform and pulse coupled neural network incorporated with morphological gradient[J].Signal, Image and Video Processing,2018.
[14] Francis D,Jebas Ee Li J.Fundus image vessel segmentation using PCNN model[C]//2016 Online International Conference on Green Engineering and Technologies (ICGET). IEEE,2016.
PDF(3476 KB)

Accesses

Citation

Detail

Sections
Recommended

/