Design of Remote Vision System Based on Infrared and Visible Multiple Information Fusion

Shen Qiang, Zhang Jie, Wang Chenyu, Cheng Peng, Yang Yang, Sun Yuanchao

Integrated Circuits and Embedded Systems ›› 2022, Vol. 22 ›› Issue (11) : 65-69.

PDF(1736 KB)
PDF(1736 KB)
Integrated Circuits and Embedded Systems ›› 2022, Vol. 22 ›› Issue (11) : 65-69.
APPLICATION NOTES

Design of Remote Vision System Based on Infrared and Visible Multiple Information Fusion

  • Shen Qiang, Zhang Jie, Wang Chenyu, Cheng Peng, Yang Yang, Sun Yuanchao
Author information +
History +

Abstract

In order to solve the problem of incomplete preservation of the texture details of the melted image,this research builds a long-distance vision system based on the multi-source information fusion technology of infrared and visible light,and extracts and integrates the target and scene image data of the multi-source image to make the image more complete and clear.The infrared image acquisition module uses the FPGA main control chip model EP4CE40F23C8 to generate timing control signals to provide digital signals such as clock signals and integral signals that work normally,and an impedance conversion circuit is designed to buffer the detector output signals.An attention module is added to the generator,and the visible light image and the infrared image are encoded to extract their respective image features.The experimental results show that the fusion image of the long-distance vision system in this study has rich detailed information,the picture is clear and the contrast is strong,and the peak signal-to-noise of the fusion image is above 35 dB.

Key words

multi-source information fusion / EP4CE40F23C8 / impedance conversion circuit / attention mechanism / image coding

Cite this article

Download Citations
Shen Qiang, Zhang Jie, Wang Chenyu, Cheng Peng, Yang Yang, Sun Yuanchao. Design of Remote Vision System Based on Infrared and Visible Multiple Information Fusion[J]. Integrated Circuits and Embedded Systems. 2022, 22(11): 65-69

References

[1] 朱亚辉.基于潜在低秩表示及导向滤波的红外与可见光图像融合方法[J].计算机系统应用,2021,30(9):295301.
[2] 马琼,李通,赵巨峰,等.使用局部视觉显著分析的红外图像增强[J].光学技术,2021,47(5):601607.
[3] 唐丽丽,刘刚,肖刚.基于双路级联对抗机制的红外与可见光图像融合方法[J].光子学报,2021,50(9):321331.
[4] 邱永生,孙国兵,王毓武,等.基于红外和可见光图像融合的夜间环境图像增强[J].哈尔滨商业大学学报(自然科学版),2021,37(4):422427,449.
[5] 蔡伟,徐佩伟,杨志勇,等.复杂背景下红外图像弱小目标检测[J].应用光学,2021,42(4):643650.
[6] 巩稼民,吴艺杰,刘芳,等.基于NSST域结合SCM与引导滤波的图像融合[J].光电子·激光,2021,32(7):719727.
[7] 沈瑜,苑玉彬,彭静.基于变换域PCNN的近红外与彩色可见光融合[J].光谱学与光谱分析,2021,41(7):20232027.
[8] 崔晓荣,沈涛,黄建鲁,等.FABEMD和改进局部能量窗口的红外中波和长波图像融合[J].光谱学与光谱分析,2021,41(7):20432049.
[9] 路黎明.基于局部能量与NSCT的红外与可见光图像融合[J].数字技术与应用,2021,39(6):100102.
[10] Chen J,Wu K,Cheng Z,et al.A saliencybased multiscale approach for infrared and visible image fusion[J].Signal Processing,2021,182(4):107936.
[11] Ren L,Pan Z,J Cao,et al.Infrared and visible image fusion based on variational autoencoder and infrared feature compensation[J].Infrared Physics & Technology,2021,117(2):103839.
PDF(1736 KB)

Accesses

Citation

Detail

Sections
Recommended

/