In the paper,a video detection algorithm based on YoloV3 is proposed,which uses the idea of mobile net to optimize the model,and adopts the video motion adaptive reasoning algorithm based on three frame difference method and particle filter,makes full use of the target correlation between the front and back frames of the video,and finally deploys it on visionfeed.The experimental results show that the single frame detection rate of 0.331 s is realized on the COCO data set,and the speed is increased by 31.9%,which meets the operation requirements of the embedded platform.
Key words
deep learning /
target detection /
YoloV3 algorithm /
VisionSeed /
Mobile-Net
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] LIN T Y,DOLLAR P,GIRSHICKR,et al.Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017:936-944.
[2] REDMON J,DIVVALA S,GIRSHICKR,et al.You only look once:unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:779-788.
[3] 靳明浩.基于面部特征的嵌入式驾驶防疲劳系统设计[D].青岛:山东科技大学,2020.
[4] 李珣,刘瑶,李鹏飞.基于DarkNet框架下的YOLOV2算法的车辆多目标检测方法[J].交通运输工程学报,2018(6):143-146.
[5] 刘彦,秦品乐,曾建朝.基于YOLOV3与分层数据关联的多目标跟踪算法[J].计算机科学,2021,48(S2):370-375.
[6] 谢红,原博,解武.LK光流法和三帧差分法的运动目标检测算法[J].应用科技,2016,43(3):23-27.