Design of Pavement Pothole Detection System Based on Deep Learning

Jiao Shuangjian, Du Fujun

Integrated Circuits and Embedded Systems ›› 2022, Vol. 22 ›› Issue (7) : 10-13.

PDF(1420 KB)
PDF(1420 KB)
Integrated Circuits and Embedded Systems ›› 2022, Vol. 22 ›› Issue (7) : 10-13.
TOPICAL DISCUSS

Design of Pavement Pothole Detection System Based on Deep Learning

  • Jiao Shuangjian, Du Fujun
Author information +
History +

Abstract

In the paper,the design scheme of a pavement pothole embedded detection system based on deep learning network is proposed,which aims to improve the efficiency of road surface maintenance inspection and reduce highway maintenance costs.The system first trains the network model through a large number of sample data,obtains the optimal model,and then deploys the optimal model to NVIDIA TX2,and finally automatically detects the road potholes through the on-board camera,and submits the road pothole information to the road maintenance department to realize the automatic inspection of the road potholes.

Key words

pavement potholes detection / NVIDIA TX2 / deep learning / YOLOv5S

Cite this article

Download Citations
Jiao Shuangjian, Du Fujun. Design of Pavement Pothole Detection System Based on Deep Learning[J]. Integrated Circuits and Embedded Systems. 2022, 22(7): 10-13

References

[1] 高建贞.基于图像分析的道路病害自动检测研究[D].南京:南京理工大学,2003.
[2] 赵珊珊,何宁.基于卷积神经网络的路面裂缝检测[J].传感器与微系统,2017,36(11):135-138.
[3] 郎洪,温添,陆键,等.基于深度学习的三维路面裂缝类病害检测方法[J].东南大学学报(自然科学版),2021,51(1):53-60.
[4] 祝一帆,王海涛,李可,等.一种高精度路面裂缝检测网络结构Crack U-Net[J].计算机科学,2022,49(1):204-211.
[5] Ultralytics.Yolov5[EB/OL].[2022-02].https://github.com/ultralytics/yolov5.
[6] 董红召,方浩杰,张楠.旋转框定位的多尺度再生物品目标检测算法[J].浙江大学学报(工学版),2022,56(1):16-25.
[7] ZHANG H,WANG Y,DAYOUB F,et al.VarifocalNet:An IoU-aware Dense Object Detector,2020.
[8] LIN T-Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection,2017.
[9] NVIDIA Jetson TX2赋能终端设备实现人工智能[J].单片机与嵌入式系统应用,2017,17(5):62.
[10] 张永合.Jetson TX2平台的最小应用系统硬件设计[J].单片机与嵌入式系统应用,2019,19(10):52-54.
PDF(1420 KB)

Accesses

Citation

Detail

Sections
Recommended

/