In view of the classic dark channel prior algorithm for image to fog will exist a splash and appear the "white",the problem of the missing details,the article adopts oriented filtering and K threshold method to optimize the combination,and use the image quality evaluation method for the optimized algorithm for testing and comprehensive analysis.The optimized algorithm are verified through the experiment to fog effect is better than the original algorithm.
Key words
dark channel prior algorithm /
guided filtering /
K threshold
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 刘一贤.面向交通安全的去雾图像清晰化技术研究[D].绵阳:西南科技大学,2018.
[2] Lai Y,Wang Q,Chen R.Improved Single Image Haze Removal for Intelligent Driving[J].Pattern Recognition Image Anal,2020,30(1):523-529.
[3] 魏然然,詹伟达,朱德鹏,等.改进多尺度的Retinex红外图像增强[J].液晶与显示,2021,36(3):465-474.
[4] CHOIL K,YOU J,BOVIK A C.Referenceless prediction of perceptual fog density and perceptual image defogging[J].IEEE Transactions on Image Processing,2015,24(11):3888-3891.
[5] Vaz Eduardo,Kyriakidis Jordan.Dark channels in resonant tunneling transport through artificial atoms[J].The Journal of Chemical Physics,2008,129(2).
[6] KHe,J Sun,X Tang.Single Image Haze Removal Using Dark Channel Prior[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353.
[7] HE K M,SUN J,TANG X O.Guided Image Filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1397-1409.
[8] 高陈强,李佩.引导滤波和三维块匹配结合的红外图像去噪[J].重庆邮电大学学报(自然科学版),2016,28(2):150-155.