The basic concepts of brain-computer interface(BCI) are described and the necessity of low-power high-resolution ADC chips in BCI system is analyzed.Then the performance of the domestic ADC chip BMF21A1 is discussed,and the EEG simulator is used to verify that the chip can be applied to the acquisition of weak EEG signals.At last,taking the ADC module composed of the chip as an example,three typical applications of BCI are described,including EOG detection,attention and meditation detection,and SSVEP.
Key words
BMF21A1 /
BCI /
EOG detection /
attention and meditation /
SSVEP
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Raut S V,Yadav D M.A Review on fMRI Signal Analysis and Brain Mapping Methodologies[C]//Proceedings of the First International Conference on Computational Intelligence and Informatics.Springer,Singapore,2017:309-320.
[2] 陆琼衡.美国脑机接口研发过程及进展[J].生物学教学,2022,47(5):9-11.
[3] 蒲江波,余云涛,蔺芳,等.脑机接口标准化进展[J].生命科学仪器,2021,19(6):4-13.
[4] Vidal J J.Toward direct brain-computer communication[J].Annual review of Biophysics and Bioengineering,1973,2(1):157-180.
[5] 贺文韬.脑机接口技术综述[J].数字通信世界,2018(1):73-78.
[6] Saha S,Mamun K A,Ahmed K,et al.Progress in brain computer interface: Challenges and opportunities[J].Frontiers in Systems Neuroscience,2021(15):578875.
[7] 乔纳森.脑-机接口原理与实践[M].北京:国防工业出版社,2017.
[8] 贺光伟,董旭峰,齐民.脑机接口柔性电极材料研究进展[J].功能材料,2019,50(12):12026-12034.
[9] 江苏集萃脑机融合智能技术研究所.BMF21A1 datasheet,2021.
[10] Lin H,Li Y.Using EEG data analytics to measure meditation[C]//International Conference on Digital Human Modeling and Applications in Health,Safety,Ergonomics and Risk Management.Springer,Cham,2017:270-280.
[11] Ravi A,Beni N H,Manuel J,et al.Comparing user-dependent and user-independent training of CNN for SSVEP BCI[J].Journal of neural engineering,2020,17(2):26-28.