Research on Super-resolution Reconstruction Method of Deep Convolution Neural Network Image

Chen Xin, Wang Ling, Zhu Jiajia, Liu Zihan, Shen Li

Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (1) : 7-10.

PDF(1221 KB)
PDF(1221 KB)
Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (1) : 7-10.
TOPICAL DISCUSS

Research on Super-resolution Reconstruction Method of Deep Convolution Neural Network Image

  • Chen Xin, Wang Ling, Zhu Jiajia, Liu Zihan, Shen Li
Author information +
History +

Abstract

The network image super-resolution reconstruction technology is realized based on the deep convolution neural network algorithm.In order to meet the needs of image super-resolution accuracy detection and construction,the image reconstruction framework is realized by constructing the image fusion technology,forming a control module with the robot vision system data as the main body,realizing the goal of image fusion analysis of network image super-resolution,and completing the deep convolution neural network image reconstruction.In the construction process of deep convolution neural network image,pay attention to the decision-making scheme of neural network output data and the design of adaptive preset module of image,analyze the number of nodes in each layer of deep convolution neural network,balance the amount of information loss in the process of deep convolution of image resolution data,and improve the reconstruction accuracy of image resolution data.

Key words

convolutional neural network / image fusion / data decision / resolving power

Cite this article

Download Citations
Chen Xin, Wang Ling, Zhu Jiajia, Liu Zihan, Shen Li. Research on Super-resolution Reconstruction Method of Deep Convolution Neural Network Image[J]. Integrated Circuits and Embedded Systems. 2023, 23(1): 7-10

References

[1] 倪若婷,周莲英.基于卷积神经网络的人脸图像超分辨率重建方法[J].计算机与数字工程,2022,50(1):195-200.
[2] 朱泓宇,谢超.基于可逆卷积神经网络的图像超分辨率重建方法[J].林业机械与木工设备,2021,49(3):20-25.
[3] 田煜,贾瑞生,邓梦迪,等.基于卷积神经网络的模糊车牌图像超分辨率重建方法[J].计算机应用与软件,2020,37(11):159-164,228.
[4] 刘娜,李翠华.基于多层卷积神经网络学习的单帧图像超分辨率重建方法[J].中国科技论文,2015,10(2):201-206.
[5] 田煜.基于卷积神经网络的遥感图像超分辨率重建方法研究[D].青岛:山东科技大学,2020.
[6] 李伟,张旭东.基于卷积神经网络的深度图像超分辨率重建方法[J].电子测量与仪器学报,2017,31(12):1918-1928.
[7] 杜井龙.基于深度卷积神经网络的3D-MRI图像超分辨率重建算法研究[D].重庆:重庆大学,2020.
[8] 徐何君.基于卷积神经网络的医学图像超分辨率重建方法研究[D].武汉:华中科技大学,2020.
[9] 刘欢.面向图像超分辨率重建的多尺度卷积神经网络方法[D].杭州:中国计量大学,2020.
[10] 刘村,李元祥,周拥军,等.基于卷积神经网络的视频图像超分辨率重建方法[J].计算机应用研究,2019,36(4).
[11] 范佩佩.基于卷积神经网络的单幅深度图像超分辨率重建[D].成都:西华大学,2020.
[12] 于淑侠,胡良梅,张骏,等.基于金字塔式双通道卷积神经网络的深度图像超分辨率重建[J].计算机应用研究,2020,37(8).
[13] 蔡迎春.基于深度卷积神经网络的图像超分辨率重建算法[D].北京:中国矿业大学,2019.
[14] 于淑侠.基于卷积神经网络的深度图像超分辨率重建[D].合肥:合肥工业大学,2019.
[15] 刘月峰,杨涵晰,蔡爽,等.基于改进卷积神经网络的单幅图像超分辨率重建方法[J].计算机应用,2019,39(5):1440-1447.
[16] 郭晓.基于深度卷积神经网络的单幅图像超分辨率重建研究[D].南京:南京航空航天大学,2018.
[17] 王爱丽,张小妹,韩闯,等.基于深度卷积神经网络的遥感图像超分辨率重建[J].黑龙江大学自然科学学报,2018,35(1):122-126.
PDF(1221 KB)

Accesses

Citation

Detail

Sections
Recommended

/