Localization Enhancement Algorithm for Wireless Sensor Network Based on Improved Gray Wolf Optimizer

Wang Pengfei, Zheng Xiaoyun, Lv Yanan

Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (10) : 40-43.

PDF(1208 KB)
PDF(1208 KB)
Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (10) : 40-43.
TECHNOLOGY REVIEW

Localization Enhancement Algorithm for Wireless Sensor Network Based on Improved Gray Wolf Optimizer

Author information +
History +

Abstract

To address the problems of insufficient localization accuracy and long localization time of current wireless sensor network localization algorithms,a localization method based on the improved gray wolf optimizer is proposed.To address the shortcomings of the basic gray wolf optimizer such as insufficient solution accuracy and easy to fall into local optimum,an adaptive search mechanism is introduced to extend the search range of the algorithm,and a spiral search technique is used to help the algorithm jump out of local optimum.The sensor nodes estimate the distance to the signal sender based on the signal strength and estimate the position using the improved gray wolf optimizer.Compared with existing localization methods,the proposed localization algorithm has better localization accuracy and convergence speed.

Key words

wireless sensor networks / gray wolf optimizer / adaptive mechanisms / inverse learning

Cite this article

Download Citations
Wang Pengfei , Zheng Xiaoyun , Lv Yanan. Localization Enhancement Algorithm for Wireless Sensor Network Based on Improved Gray Wolf Optimizer[J]. Integrated Circuits and Embedded Systems. 2023, 23(10): 40-43

References

[1]
王宗山, 赵一帆, 李波, 等. 基于能量均衡高效WSN的分簇路由算法[J]. 计算机工程与设计, 2021, 42(10):2701-2709.
[2]
王海云, 唐亮, 林智慧. 一种改进果蝇算法的WSN节点定位方法[J]. 机械设计与制造工程, 2023, 52(4):116-120.
[3]
余修武, 商亚东, 刘永. 临时优劣重心反向融变的麻雀优化WSN定位算法[J]. 北京邮电大学学报, 2023, 46(1):90-96.
针对群智能优化算法在无线传感器网络(WSN)定位问题中迭代效率慢和容易陷入局部最优等问题,提出了临时优劣重心反向融变的麻雀优化 WSN 定位算法。 该算法利用节点估计距离构建盒子模型,初步确定节点的位置区域,缩小了前期的搜寻区域范围;利用 Circle 混沌映射初始化种群,使种群分布更加均匀;并提出临时优劣重心反向学习策略,在充分利用种群的搜索经验的同时也保持了种群的多样性;结合融变策略使算法更容易跳出局部最优,提高了全局搜寻的效率。 仿真实验表明,所提算法在定位精度和收敛效率方面均有较好的效果。
[4]
张龙杰, 张晓瑜, 胡慧, 等. WSN的大型仓库无人化智能监控系统[J]. 单片机与嵌入式系统应用, 2019, 19(9):82-85,89.
[5]
赵丽芬, 申毅, 田波, 等. 基于双焦点离心测距的移动无线传感网定位算法[J]. 计算机工程与设计, 2022, 43(2):338-345.
[6]
王宗山, 丁洪伟, 李波, 等. 能量高效的WSNs分簇路由协议[J]. 计算机工程与设计, 2021, 42(2):324-330.
[7]
于明洁, 夏斌, 张立晔. 鸡群协同定位算法的研究[J]. 无线电通信技术, 2023, 49(3):489-494.
[8]
张小康, 肖本贤, 马正祥, 等. 改进蝗虫优化-弱匹配追踪算法的WSN目标定位[J]. 仪表技术, 2022, 390(4):37-42.
[9]
王灵矫, 方凯鹏, 郭华. 改进的粒子群蒙特卡洛WSN节点定位算法[J]. 计算机科学, 2022, 49(S2):882-886.
[10]
Mirjalili Seyedali,Seyed Mohammad Mirjalili,Andrew Lewis. Grey wolf optimizer[J]. Advances in engineering software, 2014(69):46-61.
[11]
赵婷, 王爽, 段晓萌. 基于灰狼优化算法的智能电表嵌入式操作系统任务调度算法[J]. 单片机与嵌入式系统应用, 2022, 22(10):55-57,78.
[12]
王宗山, 丁洪伟, 王杰, 等. 基于正交设计的折射反向学习樽海鞘群算法[J]. 哈尔滨工业大学学报, 2022, 54(11):122-136.
[13]
冯增喜, 何鑫, 崔巍, 等. 混合随机反向学习和高斯变异的混沌松鼠搜索算法[J]. 计算机集成制造系统, 2023, 29(2):604-615.
PDF(1208 KB)

Accesses

Citation

Detail

Sections
Recommended

/