In order to improve the accuracy of spatial power system fault detection,Convolutional Neural Networks (CNN) are combined with Long Short Term Memory (LSTM).A fault detection model of space power system based on adaptive selection is proposed to realize the fault detection of space power system.By establishing digital twin virtual model,introducing typical faults,increasing the type and quantity of fault data,it is used as the data set of training model.The CNNLSTM algorithm is used for machine learning and training of sample data set to build fault detection model.The experiment results show that the fault detection accuracy of CNNLSTM model can reach 98% and the loss function is less.For each type of fault detection,the balance F score is as low as 96% and as high as 100%.The results demonstrate the effectiveness and feasibility of the proposed scheme,which has certain practical value.
Key words
space power system /
fault detection /
CNNLSTM /
digital twins /
adaptive selection
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 司佳佳,王利然,张璇,等.基于S3MPR拓扑和扰动观察法的空间电源系统研究[J].电源技术,2023,47(1):117-121.
[2] 侯璐,姚福明,舒晓东,等.基于红外技术的受限空间电气设备电源智能监测系统设计[J].电工技术,2022(13):100-102.
[3] 庞景月,赵光权.数字孪生驱动多算法自适应选择的空间电源系统故障检测[J].电子测量与仪器学报,2022,36(6):91-99.
[4] 邓刚,叶伟,程磊,等.基于深度学习的站用交直流电源系统故障诊断方法[J].电子设计工程,2022,30(20):189-193.
[5] 刘必海,冷学敏,葛茂艳,等.空间站能源扩展核心舱电源系统设计[J].上海航天(中英文),2022,39(S2):1-6.
[7] 舒成也,张建曙,杨剑,等.基于CNN算法的电表箱巡视自动导航及缺陷识别系统[J].机电工程技术,2023,52(5):213-216.
[8] LI Li-min,WANG Chao-yang,WEN Zong-zhou,et al.Landslide displacement prediction based on the ICEEMDAN, ApEn and the CNN-LSTM models[J].Journal of Mountain Science,2023,20(5):1220-1231.
[9] 张文栋,刘子琨,梁涛,等.基于CNN-LSTM的综合能源系统负荷预测模型[J].重庆邮电大学学报(自然科学版),2023,35(2):254-262.
[10] 陈轲,黄民,李一鸣.基于CNN-LSTM和注意力机制的轴承故障诊断方法[J].北京信息科技大学学报(自然科学版),2022,37(6):26-31.