Real-time Accelerated Design of CLAHE Image Enhancement Algorithm Based on ZYNQ

Li Xiaoqi, Wang Yunfeng, Wu Qiannan, Hong Yingping

Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (11) : 49-53.

PDF(2610 KB)
PDF(2610 KB)
Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (11) : 49-53.
NEW PRODUCT & TECH

Real-time Accelerated Design of CLAHE Image Enhancement Algorithm Based on ZYNQ

  • Li Xiaoqi, Wang Yunfeng, Wu Qiannan, Hong Yingping
Author information +
History +

Abstract

In low illumination environment,the overall effect of the image collected by CMOS sensor is dark,and the processing speed of image enhancement by traditional image processing methods such as image acquisition board or computer is slow,which can not meet the requirements of real-time.So a CLAHE image enhancement algorithm based on ZYNQ is proposed. CLAHE enhancement algorithm mainly carries out amplitude limiting operation on the histogram after segmentation,and uses bilinear interpolation algorithm to eliminate block effect to process the dark image,which can improve the overall quality of the image and retain local details to prevent noise amplification in the process of pixel enhancement.Then,pipeline operation instructions are used in the algorithm designed by HLS to improve the concurrency and throughput of the calculation.Finally,the synthesized IP core is solidified on the PL side of ZYNQ,and multiple sets of images can be processed and displayed on HDMI display with almost no delay,which verifies the real-time enhancement of image algorithm.

Key words

CLAHE / bilinear intepolation / image enhancement / HSV color model

Cite this article

Download Citations
Li Xiaoqi, Wang Yunfeng, Wu Qiannan, Hong Yingping. Real-time Accelerated Design of CLAHE Image Enhancement Algorithm Based on ZYNQ[J]. Integrated Circuits and Embedded Systems. 2023, 23(11): 49-53

References

[1] 王世刚,游敏娟,宋莉.直方图均衡化图像增强的改进算法[J].中国医疗器械杂志,2017,41(3):175-176,184.
[2] 文海琼,李建成.基于直方图均衡化的自适应阈值图像增强算法[J].中国集成电路,2022,31(3):38-42,71.
[3] Kim T K.Contrast enhancement system using spatially adaptive histogram equalization withtemporal filtering[J].IEEE Transactions on Consumer Electronics,1998,44(1):82-87.
[4] 朱林林,王国中,滕国伟,等.基于图像增强处理的CDVS匹配算法[J].电子测量技术,2019,42(4):123-128.
[5] Stark J A.Adaptive image contrast enhancement using generalizations of histogram equalization[J].IEEE Transactions on Image Processing,2000,9(5):889-896.
[6] Lee J,Pant S R,Lee H S.An Adaptive Histogram Equalization Based Local Technique for Contrast Preserving Image Enhancement[J].International Journal of Fuzzy Logic & Intelligent Systems,2015,15(1):35-44.
[7] 孙冬梅,陆剑锋,张善卿.一种改进CLAHE算法在医学试纸条图像增强中的应用[J].中国生物医学工程学报,2016,35(4):502-506.
[8] Han Y,Oruklu E.Real-time traffic sign recognition based on Zynq FPGA and ARM SoCs[C]//IEEE International Conference on Electro/Information Technology,IEEE,2014:373-376.
[9] 方丹阳,付青青,吴爱平.基于自适应动态范围CLAHE的雾天图像增强[J].激光与光电子学进展,2023,60(4):150-157.
[10] 王建,庞彦伟.基于CLAHE的X射线行李图像增强[J].天津大学学报,2010,43(3):194-198.
[11] 王智奇,李荣冰,刘建业,等.基于同态滤波和直方图均衡化的图像增强算法[J].电子测量技术,2020,43(24):75-80.
[12] 卫建华,刘润利,许佳豪,等.基于PYNQ框架的人体目标跟踪系统[J].国外电子测量技术,2021,40(12):89-95.
[13] 顾明,郑林涛,尤政.基于颜色空间转换的交通图像增强算法[J].仪器仪表学报,2015,36(8):1901-1907.
[14] 王云峰,范正吉,何鑫,等.基于Vivado HLS的内窥镜实时暗部增强算法设计[J].电子测量技术,2022,45(23):31-37.
[15] 何凯,梁蓓,杨发顺.基于Vivado HLS的求取特征点图像坐标的设计[J].电子科技,2018,31(4):87-90.
PDF(2610 KB)

Accesses

Citation

Detail

Sections
Recommended

/