Pedestrian Target Detection Technology Using Domestically Produced AI Chips Under Multi-label and Multi-target Fusion

Li Qiang, Zhuang Li, Wang Qiulin, Zhang Shuai, Chen Kai

Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (12) : 27-30.

PDF(1254 KB)
PDF(1254 KB)
Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (12) : 27-30.
TECHNOLOGY REVIEW

Pedestrian Target Detection Technology Using Domestically Produced AI Chips Under Multi-label and Multi-target Fusion

  • Li Qiang1, Zhuang Li2, Wang Qiulin2, Zhang Shuai1, Chen Kai2
Author information +
History +

Abstract

Pedestrian target detection needs to process a large amount of image or video data,which puts forward high requirements on the computing power and storage capacity of AI chip in terms of real-time performance and efficiency.Therefore,the localization AI chip pedestrian target detection technology with multi-label and multi-target fusion is proposed.The feature extraction model of pedestrian target is constructed,and the feature information is spliced across dimensions.The parallel computing capability of AI chip is used to fuse the above features.The convergent characteristics of the target space are obtained by combining the rectification function.Based on this,considering multi-target and multi-fusion,the IOU threshold is used to calculate the probability of pedestrian target candidate frame,so as to achieve high-precision pedestrian target detection.The experiment results show that the proposed method can detect pedestrian targets with high accuracy.

Key words

AI chip / SSD algorithm / IOU

Cite this article

Download Citations
Li Qiang, Zhuang Li, Wang Qiulin, Zhang Shuai, Chen Kai. Pedestrian Target Detection Technology Using Domestically Produced AI Chips Under Multi-label and Multi-target Fusion[J]. Integrated Circuits and Embedded Systems. 2023, 23(12): 27-30

References

[1] 徐炳辉,苏有斌,白宏权,等.基于BP神经网络的铁轨上方行人检测方法[J].自动化技术与应用,2023,42(5):76-79.
[2] 娄翔飞,吕文涛,叶冬,等.基于计算机视觉的行人检测方法研究进展[J].浙江理工大学学报(自然科学版),2023,49(3):318-330.
[3] 张宏扬.基于深度学习的遮挡行人检测研究[J].信息技术与信息化,2023(6):217-220.
[4] 邓天民,王丽,刘旭慧.基于注意力及特征融合的红外行人检测算法[J].重庆理工大学学报(自然科学版),2023,37(6):196-203.
[5] 孙晨皓,赖惠成,李亚东,等.改进YOLOX在行人目标检测中的应用研究[J].东北师大学报(自然科学版),2023,55(2):76-84.
[6] 金梅,秦芊,张立国.基于改进CenterNet行人检测研究[J].燕山大学学报,2023,47(3):208-215.
[7] 张伦,谭光兴.基于改进SSD的行人检测算法[J].广西科技大学学报,2023,34(3):93-98,107.
[8] 高强,唐福兴,李栋,等.基于改进YOLOv5的密集场景行人检测方法研究[J].国外电子测量技术,2023,42(4):125-130.
[9] 李颀,王娇,邓耀辉.基于遮挡感知的行人检测与跟踪算法[J].传感器与微系统,2023,42(4):126-130.
[10] 吴昊.基于YOLOX和重识别的行人多目标跟踪方法[J].自动化与仪表,2023,38(3):59-62,67.
PDF(1254 KB)

Accesses

Citation

Detail

Sections
Recommended

/