Early Warning System of Lithium Battery Running State Based on Neural Network and Voiceprint Recognition

Xie Lingdong, Wang Lipeng, Zhou Honghui, Weng Donglei, Yang Ping, Zhong Liangliang

Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (4) : 45-49.

PDF(1732 KB)
PDF(1732 KB)
Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (4) : 45-49.
TECHNOLOGY REVIEW

Early Warning System of Lithium Battery Running State Based on Neural Network and Voiceprint Recognition

  • Xie Lingdong1, Wang Lipeng1, Zhou Honghui1, Weng Donglei2, Yang Ping2, Zhong Liangliang2
Author information +
History +

Abstract

In order to improve the early warning ability of lithium battery energy storage,an early warning system of lithium battery energy storage is designed by combining edge computing technology.A multi-mode voiceprint recognition device for lithium battery is used to collect the sound features emitted during the running of lithium battery,extract the voiceprint feature parameters,and calculate the power spectrum of the voiceprint signal.The FPGA chip and hardware accelerator are used in the voice print recognition device of lithium battery.By constructing the fault warning model of BP-SNN fusion neural network,combining the back-propagation neural network and pulse neural network,the time information is calculated and transmitted by the specific neuron model,so that the time series of lithium battery monitoring data can be processed effectively,and improve the lithium battery fault warning capability.

Key words

lithium battery energy storage / edge computing / voiceprint recognition / pulse neural network / backpropagation

Cite this article

Download Citations
Xie Lingdong, Wang Lipeng, Zhou Honghui, Weng Donglei, Yang Ping, Zhong Liangliang. Early Warning System of Lithium Battery Running State Based on Neural Network and Voiceprint Recognition[J]. Integrated Circuits and Embedded Systems. 2023, 23(4): 45-49

References

[1] 孙洁,刘梦,刘晓悦,等.LSTM神经网络算法对锂电池故障信号检测的研究[J].现代电子技术,2022,45(3):73-77.
[2] 贾俊,胡晓松,邓忠伟,等.数据驱动的锂离子电池健康状态综合评分及异常电池筛选[J].机械工程学报,2021,57(14):141-149,159.
[3] 张青松,赵启臣.商用钴酸锂电池过充电安全性研究[J].电源技术,2021,45(3):286-288,316.
[4] 谢建江,高翔,夏晨强,等.锂电池储能舱运行状态信息采集系统研究[J].储能科学与技术,2021,10(3):1109-1116.
[5] He Y,Pham H,Liang X,et al.Impact of ultrathin coating layer on lithium-ion intercalation into particles for lithium-ion batteries[J].Chemical Engineering Journal,2022(440):135-565.
[6] 郑犁,李康,章玄,等.基于锂电池的空间电源系统钝化研究[J].电源技术,2022,46(1):100-103.
[7] 段志鹏,韩冰.磷酸铁锂电池储能系统在调峰电厂中的应用[J].科技创新与应用,2021,28(11):17-21,24.
[8] 张汉如.锂电池储能系统火灾危险性及防范措施研究[J].中国高新科技,2021(22):90-91.
[9] Pai N M,Malyam V,Murugesan M,et al.Lithium toxicity at therapeutic doses as a fallout of COVID-19 infection: a case series and possible mechanisms[J].International Clinical Psychopharmacology,2022,37(1):25-28.
[10] 黎钦懿,杨林,羌嘉曦.融合内部温度估计的锂电池内短路建模与诊断[J].机电一体化,2021,27(4):31-40.
PDF(1732 KB)

Accesses

Citation

Detail

Sections
Recommended

/