Research Progress in Object Detection Based on Deep Learning

Zhou Keyu, Li Jun

Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (7) : 38-40.

PDF(1054 KB)
PDF(1054 KB)
Integrated Circuits and Embedded Systems ›› 2023, Vol. 23 ›› Issue (7) : 38-40.
TECHNOLOGY REVIEW

Research Progress in Object Detection Based on Deep Learning

  • Zhou Keyu, Li Jun
Author information +
History +

Abstract

In the paper,the development and classification of single-stage object detection are introduced firstly.Then,the YOLO series of algorithms are introduced,especially the important core mechanisms in YOLO,such as loss function,network structure,optimization strategy,k-means clustering and batch normalization.This is followed by an introduction to YOLO's application scenarios,such as pedestrian detection,industry and medicine.Finally,the characteristics of YOLO series algorithms and identify future improvement directions are summarized,and this paper has certain guiding significance for the study of deep learning object detection.

Key words

deep learning / object detection / YOLO algorithm / convolutional neural network

Cite this article

Download Citations
Zhou Keyu, Li Jun. Research Progress in Object Detection Based on Deep Learning[J]. Integrated Circuits and Embedded Systems. 2023, 23(7): 38-40

References

[1] Liu L,Ouyang W,Wang X,et al.Deep Learning for Generic Object Detection: A Survey[J].International Journal of Computer Vision,2020,128(2):261-318.
[2] Everingham M,Van Gool L,Williams C K I,et al.The Pascal Visual Object Classes (VOC) Challenge[J].International Journal of Computer Vision,2010,88(2):303-338.
[3] Redmon J,Divvala S,Girshick R,et al.You Only Look Once:Unified, Real-Time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016:779-788.
[4] Redmon J,Farhadi A.YOLO9000:Better,Faster,Stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,HI:IEEE,2017:6517-6525.
[5] Ioffe S,Szegedy C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[Z].arXiv,2015(2015-03-02).
[6] Redmon J,Farhadi A.YOLOv3:An Incremental Improvement[Z].arXiv,2018(2018-04-08).
[7] He K,Zhang X,Ren S, et al.Deep Residual Learning for Image Recognition[Z].arXiv,2015(2015-12-10).
[8] Li C,Li L,Jiang H,et al.YOLOv6:A Single-Stage Object Detection Framework for Industrial Applications[Z].arXiv,2022(2022-09-07).
[9] Liu S,Qi L,Qin H,et al.Path Aggregation Network for Instance Segmentation[Z].arXiv,2018(2018-09-18).
[10] 娄翔飞,吕文涛,叶冬,等.基于计算机视觉的行人检测方法研究进展[J].浙江理工大学学报(自然科学版), 2023(2):1-12.
[11] 张立国,马子荐,金梅,等.基于YOLO的轻量红外图像行人检测方法[J].激光与红外,2022,52(11):1737-1744.
[12] 彭雨诺,刘敏,万智,等.基于改进YOLO的双网络桥梁表观病害快速检测算法[J].自动化学报,2022,48(4):1018-1032.
[13] 郑雯,张标标,吴俊宏,等.适于多尺度宫颈癌细胞检测的改进算法[J].光电子·激光,2022,33(9):948-958.
[14] Tan M,Le Q.EfficientNet:Rethinking Model Scaling for Convolutional Neural Networks[C]//Proceedings of the 36th International Conference on Machine Learning.PMLR,2019:6105-6114.
[15] Howard A G, Zhu M, Chen B, et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[Z].arXiv,2017(2017-04-16).
[16] Krizhevsky A,Sutskever I,Hinton G E.ImageNet Classification with Deep Convolutional Neural Networks[C]//Advances in Neural Information Processing Systems.Curran Associates,Inc.,2012.
[17] Dosovitskiy A,Beyer L,Kolesnikov A,et al.An Image is Worth 16×16 Words:Transformers for Image Recognition at Scale[Z].arXiv,2021(2021-06-03).
[18] Han K,Wang Y,Tian Q,et al.GhostNet:More Features from Cheap Operations[Z].arXiv,2020(2020-03-13).
[19] Ma N,Zhang X,Huang J,et al.WeightNet:Revisiting the Design Space of Weight Networks[Z].arXiv, 2020(2020-07-24).
[20] Iandola F N,Han S,Moskewicz M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[Z].arXiv,2016(2016-11-04).
[21] Borji A.What is a salient object? A dataset and a baseline model for salient object detection[J].IEEE Transactions on Image Processing, 2015,24(2):742-756.
PDF(1054 KB)

Accesses

Citation

Detail

Sections
Recommended

/