Advance in space radiation effects of silicon photodetectors

FU Jing, FU Xiaojun, WEI Jianan, ZHANG Peijian, GUO Anran

Integrated Circuits and Embedded Systems ›› 2024, Vol. 24 ›› Issue (3) : 6-12.

PDF(8647 KB)
PDF(8647 KB)
Integrated Circuits and Embedded Systems ›› 2024, Vol. 24 ›› Issue (3) : 6-12. DOI: 10.20193/j.ices2097-4191.2024.03.002
Special Topic of Aerospace Integrated Circuits

Advance in space radiation effects of silicon photodetectors

Author information +
History +

Abstract

Silicon-based optoelectronic technology combines the advantages of high integration of large-scale IC manufacturing technology with the advantages of large bandwidth,high speed ability of optoelectronic chips,and promotes the wide application of silicon-based optoelectronic devices in high energy physics experiments,medical imaging and high energy particle colliders.However,photodetectors used in space environment and medical detectors are expected to be subjected to a cumulative fluences of ~1012 particles/cm2 during their operating cycle,while detectors used in large particle colliders are expected to a radiation fluences of ~1014 particles/cm2.In this paper,the advance in space radiation effects of Si-based photodetectors is described in detail,including the radiation effects of Si-based photodiodes,avalanche photodiodes,single photon detectors and photomultiplier after irradiation by different particles.The research results show that the hardness of total ionizing dose for the detector is good,and the displacement damage is the main reason for the degradation of detectors’ key parameters.Due to the difference in working principle,all kinds of devices show different degradation behavior and degradation mechanism in the space radiation.

Key words

silicon photodetectors / space radiation / total ionizing dose effect / displacement damage effect / single event effects

Cite this article

Download Citations
FU Jing , FU Xiaojun , WEI Jianan , et al . Advance in space radiation effects of silicon photodetectors[J]. Integrated Circuits and Embedded Systems. 2024, 24(3): 6-12 https://doi.org/10.20193/j.ices2097-4191.2024.03.002

References

[1]
周悦, 胡志远, 毕大炜, 等. 硅基光电子器件的辐射效应研究进展[J]. 物理学报, 2019, 68(20):204-206.
ZHOU Y, HU ZH Y, BI D W, et al. Research progress on radiation effects of silicon-based optoelectronic devices[J]. Acta Physica Sinica, 2019, 68(20):204-206 (in Chinese).
[2]
NIKOLIĆ D, VASIC A, FETAHOVIC I, et al. Photodiode behavior in radiation environment[J]. Scientific Publications of the State University of Novi Pazar Series A, 2011, 3(1):27-34.
[3]
HOFFMAN G B, GEHL M, MARTINEZ N J, et al. The Effect of Gamma Radiation Exposure on Active Silicon Photonic Device Performance Metrics[J]. IEEE Transactions on Nuclear Science, 2019, 66(5):801-809.
[4]
MOSCATELLI F, PASSERI D, MOROZZI A, et al. Effects of interface donor trap states on isolation properties of detectors operating at high-luminosity lhc[J]. IEEE Transactions on Nuclear Science, 2017, 64(8):2259-2267.
[5]
MOSCATELLI F, MOROZZI A, PASSERI D, et al. Analysis of surface radiation damage effects at hl-lhc fluences: Comparison of different technology options[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers,Detectors and Associated Equipment, 2019, 924:198-202.
[6]
MOSCATELLI F, MOROZZI A, PASSERI D, et al. Measurements and simulations of surface radiation damage effects on ifx and hpk test structures[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers,Detectors and Associated Equipment, 2020, 958: 162794.
[7]
PASSERI D, MOSCATELLI F, MOROZZI A, et al. Modeling of radiation damage effects in silicon detectors at high fluences hl-lhc with sentaurus tcad[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824:443-445.
[8]
KASAP S O, CAPPER P. Springer handbook of electronic and photonic materials: volume 11[M]. Springer, 2006.
[9]
M MOLL. Radiation Damage in Silicon Particle Detectors: Microscopic Defects and Macroscopic Properties[D]. Hamburg University,1999.
[10]
EISAMAN M D, FAN J, MIGDALL A, et al. Invited Review Article: Single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7):202-134.DOI:10.1063/1.3610677.
[11]
ADOLPHI R. The CMS experiment at the CERN LHC[J]. Springer Berlin Heidelberg, 2012.DOI:10.1007/978-3-642-24562-6_2.
[12]
ANTUNOVIC Z, BRITVITCH I, DEITERS K, et al. Radiation hard avalanche photodiodes for the CMS detector[J]. Nuclear Instruments & Methods in Physics Research A, 2005, 537(1/2):379-382.DOI:10.1016/j.nima.2004.08.047.
[13]
KIRN T, SCHWENKE J, RENKER D, et al. Wavelength dependence of avalanche photodiode (APD) parameters[J]. Nuclear Instruments & Methods in Physics Research, 1999, 387(1):202-204.DOI:10.1016/S0168-9002(96)00990-4.
[14]
VEERAPPAN C, CHARBON E. A Low Dark Count p-i-n Diode Based SPAD in CMOS Technology[J]. IEEE Transactions on Electron Devices, 2015, 63(1):65-71.DOI:10.1109/TED.2015.2475355.
[15]
WU M L, RIPICCINI E, KIZILKAN E, et al. Radiation Hardness Study of Single-Photon Avalanche Diode for Space and High Energy Physics Applications[J]. Sensors, 2022(22):2919.
[16]
MALHERBE V, PAOLI S D, MAMDY B, et al. Displacement Damage Characterization of CMOS Single-Photon Avalanche Diodes:Alpha-Particle and Fast-Neutron Measurements[J]. IEEE Transactions on Nuclear Science, 2021(99): 1.DOI:10.1109/TNS.2021.3071171.
[17]
PROCHAZKA I, KRAL L, HAMAL K, et al. Photon counting timing uniformity-unique feature of the silicon avalanche photodiodes K14[J]. Journal of Modern Optics, 2007(54):141-149.
[18]
PROCHAZKA I, HAMAL K, KRAL L. Single photon counting module for space applications[J]. Journal of Modern Optics, 2007(54):151-161.
[19]
KODET J, PROCHAZKA I, BLAZEJ J, et al. Single photon avalanche diode radiation tests[J]. Nuclear Instruments & Methods in Physics Research, 2012, 695:309-312.DOI:10.1016/j.nima.2011.11.001.
[20]
T MATSUBARA, H TANAKA, K NITTA, et al. Radiation damage of MPPC by gamma-ray irradiation with Co-60[J]. Pos Proceedings of Science, 2007.
[21]
PAGANO R, LOMBARDO S, PALUMBO F, et al. Radiation hardness of silicon photomultipliers under 60Co γ-ray irradiation[J]. Nuclear Inst & Methods in Physics Research A, 2014,767 (dec.11):347-352.DOI:10.1016/j.nima.2014.08.028.
[22]
GARUTTI E, KLANNER R, LOMIDZE D, et al. Characterisation of highly radiation-damaged SiPMs using current measurements. 2017[2024-02-18].DOI:10.48550/arXiv.1709.05226.
[23]
T TSANG, T RAO, S STOLL, et al. Neutron radiation damage and recovery studies of SiPMs[C]// IEEE Nuclear Science Symposium & Medical Imaging Conference, 2018.
[24]
M Yu Barnyakov, T Frach, S A Kononov, I Kuyanov, et al. Radiation hardness test of the Philips Digital Photon Counter with proton beam[J]. Nucl. Instrum. Methods, 2013(A824): 83-84.
PDF(8647 KB)

Accesses

Citation

Detail

Sections
Recommended

/